Speakable in quantum mechanics

Ronnie Hermens
University of Groningen

October 10, 2012

Background (old) problem: quantum probabilities

- Born rule:

$$
\operatorname{Prob}_{\rho}(A \in \Delta)=\operatorname{Tr}\left(\rho P_{A}^{\Delta}\right)
$$

with P_{A} PVM associated with A.

- Simplicity assumption: A is a self-adjoint operator on a finite dimensional Hilbert space.
- What are quantum probabilities probabilities of?
- Assumption: probability that the proposition $A \in \Delta$ is true.
- What does the proposition express and what is the logic of such propositions?

Proposals for $A \in \Delta$

- Realist conjunction: " A has a value and it lies in the set Δ."
- Instrumentalist conjunction: " A is measured and the result lies in Δ."
- Conditional: "If A is measured, then the result lies in Δ." '

All face problems with orthodox quantum logic. Consider $A_{1}, A_{2}, \Delta_{1}, \Delta_{2}$ such that

$$
P_{A_{1}}^{\Delta_{1}}=P_{A_{1}}^{\Delta_{1}} \wedge\left(P_{A_{2}}^{\Delta_{2}} \vee P_{A_{2}}^{\Delta_{2}^{c}}\right) \neq\left(P_{A_{1}}^{\Delta_{1}} \wedge P_{A_{2}}^{\Delta_{2}}\right) \vee\left(P_{A_{1}}^{\Delta_{1}} \wedge P_{A_{2}}^{\Delta_{2}^{c}}\right)=0
$$

None of the readings can explain both equalities.
Options:
(a) None of these propositions capture $A \in \Delta$.
(b) The propositions of the form $A \in \Delta$ are not fully characterized by projections.

Motivation (new problem)

- If orthodox quantum logic does not describe these propositions, which logic does?
- Program: set up a new quantum logic based on propositions of the form
$M_{A}(\Delta)=$ " A is measured and the result lies in $\Delta . "$
- Start with the instrumentalist conjunctions in stead of the other propositions because:
(1) Neutral with respect to the interpretation of the theory.
(2) Conditionals are difficult.
(3) Conjunctions seem more primitive and may be used to define conditionals.

A preorder for elementary propositions

- Total set of elementary propositions:

$$
E P_{Q M}=\left\{M_{A}(\Delta) ; A=A^{*}, \Delta \subset \operatorname{Spec}(A)\right\} .
$$

- LMR (Law-Measurement Relation):

If $A_{2}=f\left(A_{1}\right)$, then $M_{A_{1}}\left(\Delta_{1}\right)$ implies $M_{A_{2}}\left(f\left(\Delta_{1}\right)\right)$.

- Leads to the preorder

$$
M_{A_{1}}\left(\Delta_{1}\right) \leq M_{A_{2}}\left(\Delta_{2}\right) \text { iff } \mathcal{A l g}\left(A_{1}\right) \supset \mathcal{A} \lg \left(A_{2}\right) \text { and } P_{A_{1}}^{\Delta_{1}} \leq P_{A_{2}}^{\Delta_{2}}
$$

- IEA (Idealized Experimenter Assumption):

Every measurement has an outcome $\left(M_{A}(\varnothing)=\perp\right)$.

- Leads to the preorder

$$
\begin{gathered}
M_{A_{1}}\left(\Delta_{1}\right) \leq M_{A_{2}}\left(\Delta_{2}\right) \text { iff } \mathcal{A l g}\left(A_{1}\right) \supset \mathcal{A l g}\left(A_{2}\right) \text { and } P_{A_{1}}^{\Delta_{1}} \leq P_{A_{2}}^{\Delta_{2}} \\
\text { or } P_{A_{1}}^{\Delta_{1}}=0 .
\end{gathered}
$$

The logic generated by elementary propositions

- The lattice of elementary propositions is

$$
E P_{Q M} / \sim \simeq S_{Q M}:=\left\{(\mathcal{A}, P) ; \begin{array}{c}
\mathcal{A} \text { Abelian algebra, } \\
P=P^{*}=P^{2} \in \mathcal{A}, P \neq 0
\end{array}\right\} \cup\{\perp\} .
$$

- Introducing disjunctions and conjunctions require extending the lattice to

$$
L_{Q M}:=\left\{S: \mathfrak{A} \rightarrow \operatorname{Proj}(\mathcal{H}) ; \quad S\left(\mathcal{A}_{1}\right) \leq S\left(\mathcal{A}_{2}\right) \text { whenever } \mathcal{A}_{1} \subset \mathcal{A}_{2}\right\}
$$

where the embedding is given by

$$
(\mathcal{A}, P) \mapsto S_{(\mathcal{A}, P)}, \quad S_{(\mathcal{A}, P)}\left(\mathcal{A}^{\prime}\right)= \begin{cases}P & \mathcal{A} \subset \mathcal{A}^{\prime} \\ 0 & \text { else }\end{cases}
$$

The logic generated by elementary propositions

- $L_{Q M}:=\left\{S: \mathfrak{A} \rightarrow \operatorname{Proj}(\mathcal{H}) ; \quad \begin{array}{c}S\left(\mathcal{A}_{1}\right) \leq S(\mathcal{A}) \in \mathcal{A} \\ \left.\mathcal{A}_{2}\right) \\ \text { whenever } \mathcal{A}_{1} \subset \mathcal{A}_{2}\end{array}\right\}$ is a Heyting algebra with the operations

$$
\begin{aligned}
\left(S_{1} \vee S_{2}\right)(\mathcal{A}) & =S_{1}(\mathcal{A}) \vee S_{2}(\mathcal{A}) \\
\left(S_{1} \wedge S_{2}\right)(\mathcal{A}) & =S_{1}(\mathcal{A}) \wedge S_{2}(\mathcal{A}) \\
\left(S_{1} \rightarrow S_{2}\right)(\mathcal{A}) & =\bigwedge\left\{S_{1}\left(\mathcal{A}^{\prime}\right)^{\perp} \vee S_{2}\left(\mathcal{A}^{\prime}\right) ; S_{1}\left(\mathcal{A}^{\prime}\right)^{\mathcal{A}^{\prime} \vee \mathcal{A}} \vee S_{2}\left(\mathcal{A}^{\prime}\right) \in \mathcal{A}\right\}
\end{aligned}
$$

- This logic is 'old' and first occurred in (Caspers,Heunen,Landsman,Spitters 2009).

Some properties of $L_{Q M}$

- Special case of the conjunction:

$$
S_{\left(\mathcal{A}_{1}, P_{1}\right)} \wedge S_{\left(\mathcal{A}_{2}, P_{2}\right)}= \begin{cases}S_{\left(\mathcal{A l g}\left(\mathcal{A}_{1}, \mathcal{A}_{2}\right), P_{1} \wedge P_{2}\right)} & \text { if }\left[\mathcal{A}_{1}, \mathcal{A}_{2}\right]=0 \\ \perp & \text { else },\end{cases}
$$

- Special case of the disjunction:

$$
S_{\left(\mathcal{A}, P_{1}\right)} \vee S_{\left(\mathcal{A}, P_{2}\right)}=S_{\left(\mathcal{A}, P_{1} \vee P_{2}\right)}
$$

- "If A is measured, then the result lies in Δ " can be associated with

$$
\left(S_{(\mathcal{A}, 1)} \rightarrow S_{\left(\mathcal{A}, P_{A}^{\Delta}\right)}\right)\left(\mathcal{A}^{\prime}\right)= \begin{cases}1 & {\left[\mathcal{A}, \mathcal{A}^{\prime}\right] \neq 0} \\ P & {\left[\mathcal{A}, \mathcal{A}^{\prime}\right]=0, P \in \mathcal{A}^{\prime}} \\ 0 & {\left[\mathcal{A}, \mathcal{A}^{\prime}\right]=0, P \notin \mathcal{A}^{\prime}}\end{cases}
$$

- Peculiar property:

$$
\left(S_{(\mathcal{A}, 1)} \rightarrow S_{\left(\mathcal{A}, P_{A}^{\Delta}\right)}\right) \vee\left(S_{(\mathcal{A}, 1)} \rightarrow S_{\left(\mathcal{A}, P_{A}^{\Delta}\right)}\right)=S_{(\mathcal{A l g}(P), 1)} \vee \neg S_{(\mathcal{A}, 1)}<\top
$$

Return to the background problem

- Can there be probability functions Prob: $L_{Q M} \rightarrow[0,1]$ such that

$$
\operatorname{Prob}_{\rho}\left(S_{(\mathcal{A}, P)}\right)=\operatorname{Tr}(\rho P)
$$

or

$$
\operatorname{Prob}_{\rho}\left(S_{(\mathcal{A}, 1)} \rightarrow S_{(\mathcal{A}, P)}\right)=\operatorname{Tr}(\rho P) ?
$$

- Answer: No. At least, not without running into conflict with the interpretation of the elements of $L_{Q M}$.
So these propositions do not capture $A \in \Delta$.
- Further options:
(1) Quantum probabilities are conditional probabilities (and not probabilities of conditionals):

$$
\operatorname{Prob}_{\rho}\left(S_{(\mathcal{A}, P)} \mid S_{(\mathcal{A}, 1)}\right)=\operatorname{Tr}(\rho P) ?
$$

(2) $L_{Q M}$ is not the full quantum logic: e.g., the relative pseudo-complement does not correspond to the conditional.

The end (?)

Thank You

