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Revisiting Birkhoff and von Neumann

“The object of the present paper is to discover what logical
structure one may hope to find in physical theories which, like
quantum mechanics, do not conform to classical logic” - [BvN36]

Method: establishing a correlation between “experimental
propositions” that live in “observation-spaces” and subsets of the
“phase-space”.

Phase-space: This is the Hilbert space H.

Observation-space: Let A1, . . . ,An be compatible observables with
spectra σ(A1), . . . , σ(An), then the corresponding observation-space
is the Cartesian product σ(A1)× . . .× σ(An). That is, the set of
possible outcomes within a certain measurement context.
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Revisiting BvN 2: Establishing a correlation

Experimental propositions are subsets ∆ of an observation space
σ(A1)× . . .× σ(An).

The “mathematical representative” of an experimental proposition is
defined as the set of states in H for which the probability of finding a
result in ∆ given a measurement of A1, . . . ,An equals 1.

These are the states in the subspace ∨
{(a1,...,an)∈∆}

n∧
i=1

PAi
({ai})

H,
with PAi

the PVM associated with Ai .

Simple case n = 1: σ(A) ⊃ ∆ 7→ PA(∆).

Thus, experimental propositions are correlated with projections.
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Revisiting BvN 3: The whole story?

P(σ(A1)× . . .× σ(An)) L(H) = {P : H → H |P = P∗ = P2}

P(σ(B1)× . . .× σ(Bm))

The correlation defines for every observation space a lattice
homomorphism taking experimental propositions to projection
operators.

Running over all observation spaces one ranges over the entirety of
L(H).

Does L(H) then define the calculus of all experimental propositions?

Two background assumptions can be identified for getting a “yes”:
1 It is unproblematic to ‘forget the measurement context’ when

correlating an experimental proposition to the phase-space.
2 Disjunctions, conjunctions and negations of experimental propositions

are again experimental propositions.
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What is an experimental proposition?

BvN don’t go deep into this question, but at least seem to assume
that it is a proposition that can serve as a prediction and can be
tested.

Inspiration from Bohr:

“all well-defined experimental evidence, even if it cannot be
analyzed in terms of classical physics, must be expressed in
ordinary language making use of common logic” - [Boh48].

Experimental propositions should thus be expressible in ordinary
language.

What kind of expressions would fit well with the program of BvN?
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What is an experimental proposition? 2

When considering a single observation-space the observation itself is
presupposed.

Example: σ(A) = {0, 1}, then PA(0) ∨ PA(1) is considered a
tautology.

These presuppositions seem to be neglected when considering
multiple observation-spaces.

Example: σ(A) = σ(B) = {0, 1}, [A,B] 6= 0

PB(0) = PB(0) ∧ (PA(0) ∨ PA(1)) 6=
(PB(0) ∧ PA(0)) ∨ (PB(0) ∧ PA(1)) = 0.

Solution: The observations should be taken into account explicitly
when explicating the experimental propositions.

Proposal for a simple experimental proposition:

MA(∆) = “A is measured and the result lies in ∆”.
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Back to the drawing board

Observation-space: Let A1, . . . ,An be compatible observables with
spectra σ(A1), . . . , σ(An), then the corresponding observation-space
is the Cartesian product σ(A1)× . . .× σ(An). That is, the set of
possible outcomes within a certain measurement context.

Experimental propositions are subsets ∆ of an observation space
σ(A1)× . . .× σ(An).

It expresses: “A1, . . . ,An are measured and the result lies in ∆”.

It is equivalent to the proposition “B1, . . . ,Bm are measured and the
result lies in Γ” iff ∨

{(a1,...,an)∈∆}

n∧
i=1

PAi
({ai})

 =

 ∨
{(b1,...,bm)∈Γ}

m∧
i=1

PBi
({bi})

 ,

and
Alg(A1, . . . ,An) = Alg(B1, . . . ,Bm).
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New mathematical representation of experimental
propositions

Equivalence classes of experimental propositions can now be identified
as pairs (A,P) with A a unital Abelian algebra specifying the
measurement context, and P ∈ A a projection specifying the
measurement outcome.

It is convenient at many times to talk about the class (A,P) as if
talking about a single representative MA(∆) with A = Alg(A) and
P = PA(∆).

Special note: It will be assumed that measurements have outcomes.
Consequently, MA(∅) is a contradiction (or antilogy).

The set of all mathematical representations of all experimental
propositions is now given by

SQM :=
{

(A,P)
∣∣∣ A Abelian algebra,
P=P∗=P2∈A, P 6=0

}
∪ {⊥}.
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Is SQM the whole story?

On the positive side, SQM is a complete lattice with

(A1,P1) ≤ (A2,P2) iff A1 ⊃ A2, P1 ≤ P2,

(A1,P1) ∧ (A2,P2) =

{
(Alg(A1,A2),P1 ∧ P2) [A1,A2] = 0,

⊥ else,

(A1,P1) ∨ (A2,P2) =
(
A1 ∩ A2,

∧
{P ∈ A1 ∩ A2|P ≥ P1 ∨ P2}

)
.

However, the assumption “Disjunctions, conjunctions and negations of
experimental propositions are again experimental propositions.” fails.

Lesson from Coecke:

“we formally need to introduce those additional propositions that
express disjunctions of properties and that do not correspond to
a property in the property lattice.” - [Coe02]
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A classical logic

SQM :=
{

(A,P)
∣∣∣ A Abelian algebra,
P=P∗=P2∈A, P 6=0

}
∪ {⊥}.

The lattice SQM is not distributive and so it makes sense to apply the
Bruns-Lakser completion to formally add the missing disjunctions.

This means, going to the lattice DI(SQM) of distributive ideals in
SQM .

This can be a messy business, but fortunately SQM is atomistic with
atoms

XQM = {(A,P) ∈ SQM |A maximal,Tr(P) = 1} .

Consequently
DI(SQM) ' P(XQM)

is a Boolean algebra.
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A classical logic 2

The embedding of SQM into P(XQM) is given by

i : SQM → P(XQM),

i : (A,P) 7→
{

(Am,P1) ∈ XQM

∣∣(Am,P1) ≤ (A,P)
}
.

And it satisfies

i ((A1,P1) ∧ (A2,P2)) = i (A1,P1) ∩ i (A2,P2) .

The construction assumes that every measurement is a measurement
of a maximal observable, remaining ignorant on which.

Further evaluation will be postponed.
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An intuitionistic logic

The following approach assumes (contrary to the previous approach)
that a proposition (A,P) is essentially weaker than the disjunction of
all (Am,P1) with (Am,P1) ≤ (A,P).

This means that disjunctions like

(A1,P1)OR(A2,P2)

are primitive whenever A1 6= A2 and equal to (A1,P1 ∨P2) otherwise.

To determine the structure of a logic containing all such propositions
notice

(A,P) = OR
A′∈A

(A′,P ′), P ′ =

{
P, A′ ⊃ A
0, else.

And

(A1,P1)OR(A2,P2) = OR
A′∈A

(A′,P ′1 ∨ P ′2), P ′i =

{
Pi , A′ ⊃ A
0, else.

Ronnie Hermens (RUG) The logic of Quantum Mechanics December 13, 2012 13 / 19



An intuitionistic logic 2

A convenient way to write infinite disjunctions:

S : A→ L(H) =̂ OR
A∈A

(A, S(A)).

Thus

(A,P) =̂ S(A,P), S(A,P)(A′) =

{
P, A′ ⊃ A
0, else.

Adding all possible disjunctions and conjunctions one obtains

LQM = {S : A→ L(H)|S(A) ∈ A, S(A1) ≤ S(A2) if A1 ⊂ A2}

the familiar intuitionistic quantum logic from Caspers, Heunen,
Landsman and Spitters [CHLS09].
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Another classical logic

LQM was obtained by formally adding conjunctions and disjunctions,
but not negations.

“Many more propositions would have to be added to make the
logic classical and most of them are rather dull.” - [Her12]

Set MA =“A is not measured.” Then

MA(σ(A))ORMA = > (A, 1)ORA = >.

Experimental propositions already have some ingredients to add such
propositions:

(A,P) implies AND
A′∈A

[A,A′] 6=0

A′

What needs to be added are propositions on further restrictions on
the measurement. I.e. rejections of measurements that are
compatible with A.
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Another classical logic 2

Introduce a new experimental proposition

MA!(∆) = “A is measured and nothing more, and the result lies in ∆”.

This satisfies

(A!,P) = (A,P)AND

(
AND
A′ 6⊂A

A′
)

(A,P) = OR
A′⊃A

(A′!,P)

A = OR
A′ 6⊃A

(A′!, 1)

Define

S !
QM =

{
(A!,P)

∣∣0 < P ∈ A,P ′ ∧ P ∈ {0,P}∀P ′ ∈ A
}

Now every proposition can be written as a unique disjunction of
elements of S !

QM . That is, as an element of P(S !
QM).
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Overview

SQM Quantum logic (has conjunctions)

P(XQM) Classical logic (adds disjunctions (sloppy))

(A,P) 7→ {(Am,P1)|Am ⊃ A,P1 ≤ P}

LQM Intuitionistic logic (adds disjunctions (tidy))

(A,P) 7→ S(A,P) : A→ L(H), S(A,P)(A′) =
{
P, A′⊃A

0, else.

P(S !
QM) Classical logic (adds negations)

S 7→
⋃
A∈A {(A′!,P ′)|A′ ⊃ A,P ′ ≤ S(A)}

∗

∗ (A,P) 7→ {(A′!,P ′)|A′ ⊃ A,P ′ ≤ P}
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Questions ?

Thank You
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