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Overview

Introduction:

The toy-structure of statistical mechanics

Statistical mechanics as the paradigm case of reduction

Investigation:

Tolman’s approach to statistical mechanics

Recovering the first law of thermodynamics

Interpretation:

Reversing the reduction
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A seemingly unrelated philosophical question

Does the quantum wave function provide a complete description for
individual systems?

Einstein (1949):
“The attempt to conceive the quantum-theoretical description as the
complete description of the individual systems leads to unnatural
theoretical interpretations, which become immediately unnecessary if one
accepts the interpretation that the description refers to ensembles of
systems and not to individual systems.”
“Assuming the success of efforts to accomplish a complete physical
description, the statistical quantum theory would, within the framework of
future physics, take an approximately analogous position to the statistical
mechanics within the framework of classical mechanics.”
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The paradigmatic view of complete descriptions

The parallel:

Quantum
Mechanics

Unified
Field Theory

Statistical
Mechanics

Classical
Mechanics

Problem of
Probability

Paradigm structure adopted in no-go theorems for HVT’s for QM:

ω a
Complete

state description
Specified

value for AΩ

fA

Prob(A = a) = Prob({ω ∈ Ω ; fA(ω) = a}).
A completed picture does not invoke an interpretation/explanation of
probability.

The structure is idealized compared to actual statistical mechanics.
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And what about the question of reduction?

Batterman (2006):

In this paper I want to consider the so-called reduction of
thermodynamics to statistical mechanics [. . . ] As is well known,
most philosophers not working in the foundations of statistical
physics still take this reduction to be a paradigm instance of that
type of intertheoretic relation. However, numerous careful
investigations by many philosophers of physics and physicists
with philosophical tendencies show this view is by and large
mistaken. It is almost surely the case that thermodynamics does
not reduce to statistical mechanics according to the received
view of the nature of reduction in the philosophical literature.

Then why still study this reduction?

Batterman: to obtain a better theory for intertheoretic relations.

Today: to obtain a better understanding of statistical mechanics.
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A paradigm example

Clausius (1857): The reduction of the ideal gas law to the Kinetic theory
of gases.

pV = CT (p = pressure, V = volume, C = constant, T =
temperature).

Three assumptions:

1 Molecules only collide against the walls, and
not against each other.

2 Collisions are fully elastic.

3 On the average, independent of the molecules
speed, every direction is equally common.

•

•

•

•

•
•

•

pV = 2
3N〈Ek〉 (N = number of molecules, 〈Ek〉 = average kinetic

energy).

Bridge laws: T =̂〈Ek〉, C =̂ 2
3N.
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Two issues with the paradigm example (1)

1 Thermodynamics is more than just the ideal gas law.
The ideal gas is just a model within thermodynamics

Laws of Thermodynamics:

-1 Isolated systems will eventually reach a state of equilibrium.
(Establishes an arrow of time, and ensures applicability of (equilibrium)
thermodynamics.)

0 Thermal equilibrium between systems is a transitive relation.
(Introduces experimental temperature.)

1 The change in internal energy U of a system is the amount of heat Q
absorbed by the system minus the amount of work W performed.

(Excludes perpetual motion of the first kind.)

dU = –dQ − –dW

2 The entropy of a thermally isolated system can never decrease.
(Excludes perpetual motion of the second kind.)

∆S ≥
∫

1

T
–dQ
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Two issues with the paradigm example (2)

2 Kinetic theory alone was recognized to be insufficient to recover the
thermodynamic laws.

Attempts to recover the thermodynamic arrow of time in particular
suggested the necessity of probabilistic explanations rather than purely
mechanical explanations.

But was Clausius’ derivation free of probabilistic notion?

Collisions are fully elastic.

Clausius invoked the rules of probability to argue that this holds on
average.

On the average, independent of the molecules speed, every direction
is equally common.

Independence as a form of the Principle of Insufficient Reason?
(Without a reason to think otherwise, quantities should assumed to be
uncorrelated.)
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Then what is Statistical Mechanics?

In the light of reduction, Statistical Mechanics
is the bridge between Thermodynamics and
Classical Mechanics.

A possible reduction cannot be understood
independent of this bridging role.

Laws of Statistical Mechanics:

1 The laws of Classical Mechanics?

2 The laws of Probability?

Thermodynamics

Statistical
Mechanics

Classical
Mechanics

Problem of
Probability

Problem of
Reduction

There is no agreed upon axiomatization of Statistical Mechanics.

Then look at what Statistical Mechanics does. Be selective: look at
tradition that follows Gibbs.
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Gibbsian Statistical Mechanics

Gibbs (1902) was very cautious about the explanatory power of his
methods.
Tolman (1938) was more optimistic:

The explanation of the complete science of thermodynamics in
terms of the more abstract science of statistical mechanics is one
of the greatest achievements of physics.

Ingredients:
1 Hamiltonian mechanics
2 Tolman’s fundamental idea:

we take the procedure of correlating any actual mechanical
system of interest, in an incompletely specified state, with an
appropriately chosen representative ensemble of such systems
[. . . ] followed by the procedure of then using average values for
the members of this ensemble as furnishing good estimates as to
what we can expect for the actual system.
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The notion of an ensemble (1)

In the ensemble approach the single (actual) system is described with
the use of an ensemble E of N similar systems.
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The average is determined by Tolman’s hypothesis of equal a priori
probabilities for different regions in the state space.

A (macro) property A of the actual system s is estimated by taking
the average of A over the ensemble.

A(s) ' 1

N

∑
s′∈E

A(s ′)
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The notion of an ensemble (2)

The number of systems in an ensemble N is assumed to be large
enough such that it can be approximated by a distribution ρ.

Then the estimate for A becomes

A(s) ' 1

N

∑
s′∈E

A(s ′) ' 〈A〉ρ ≡
∫

A(s ′)ρ(s ′)ds ′.

The distribution ρ reflects the notion of similarity adopted in
constructing the ensemble: Two states s1 and s2 are similar (w.r.t E )
when they are equally probable (w.r.t. ρ).

· ··
· ··· 'E · ··

· ··· iff Probρ( · ··
· ··· ) = Probρ( · ··

· ··· )

Two sides of the same coin:

1 The ensemble E provides the conceptual side.

2 The probability distribution ρ provides the technical side.
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Putting ensembles to work: First derivation of the first law

Sh Ss Se
Q W ∆U = ∆γQ −∆γW

Tolman: for an appropriate ensemble assume total system is isolated on
average to get

∆ 〈Hs〉 = −∆ 〈Hh〉 −∆ 〈He〉 .

And bridge laws 〈∆Q〉 =̂−∆ 〈Hh〉, 〈∆W 〉 =̂−∆ 〈He〉.
1 Khinchin’s methodological paradox: (on average) there is no

interaction between the systems.
2 No mechanical explanation of what heat and work are is given.

This is done in a separate story that doesn’t connect to the derivation.

3 The path-dependence of changes in heat/work are left unexplained.

4 Why should the individually chosen ensembles line-up to give the
correct relation? What makes an ensemble appropriate?
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Selecting a specific ensemble

An ensemble may be considered appropriate if it gives good estimates
for the macroscopic variables.

For a system in equilibrium, the estimate of a (macro) property A
should be time-independent.

This happens if ρ(s) = ρ(s(t)) is time-independent. This is the case if it is
a function of the Hamiltonian H:

ρ = f (H).

Gibbs: ρ should be normalizable and no state s should be excluded as
a possible state.

Simplest distribution satisfying these criteria is the Canonical ensemble:

ρCan := exp(α− βH).
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Validating the Canonical ensemble

Gibbs’ motivation for ρCan is very short and pragmatic. Tolman has a very
elaborate and technical derivation of ρCan from some postulates. However

“These postulates will be chosen in ways which are familiar or
plausible, but their ultimate validity will be regarded as resting
on the correspondence between deduced results and empirical
findings.”

In other words: The proof of the pudding is in the eating

The First law in Thermodynamics:

dU = –dQ − –dW

= TdS − pdV

And in Statistical mechanics:

d〈H〉Can =
1

β
dh − 〈p〉CandV
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Meanwhile on the conceptual side. . .

. . . there are some conceptual problems:
1 Mechanical explanation of thermodynamic variables?

The bridge laws

T =̂
1

β
, S=̂− h = −

∫
ρ(s) log ρ(s)ds

do not conform to Tolman’s fundamental idea that A(s) ' 〈A〉Can.

2 Subjective notion of probability?

The special role played by ρCan in recovering thermody-
namics does not fare well with the interpretation of an ensemble which is

appropriately chosen so as to correspond to the partial
knowledge that we do have as to the initial state of the
system of interest.

I The temperature of the system appears to depend on our knowledge
of the state.
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Subjective probability in statistical mechanics

Albert (2000):
“Can anybody seriously think that our merely being ignorant of the exact
microconditions of thermodynamic systems plays some part in bringing it
about, in making it the case, that (say) milk dissolves in coffee?”

Uffink (2010):
“our beliefs or lack of knowledge do not explain or cause what happens in
the real world. Instead, if we use subjective probability in statistical
physics, it will represent our beliefs about what is the case, or expectations
about what will be the case. And the results of such considerations may
very well be that we ought to expect gases to disperse, ice cubes to melt,
or coffee and milk to mix.”
“The theory is applied to physical systems, to be sure, but the probabilities
specified do not represent or influence the physical situation: they only
represent our state of mind.”
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Reversing the reduction

If a reduction of Thermodynamics is to be
accompanied by an explanation of
thermodynamic laws, then adopting subjective
probabilities in Statistical Mechanics is a
departure from the reduction program.

Then what explains our knowledge? Where
does it come from? From Thermodynamics!

Thermodynamics

Statistical
Mechanics

Classical
Mechanics

Problem of
Probability

Problem of
Reduction

A reversal of reduction: Thermodynamics informs Statistical Mechanics
rather than that it reduces to Statistical Mechanics. As a peculiar slogan:

thermodynamics is the science where probabilities can be
measured with thermometers and calorimeters. - Martin-Löf
1979 p.70
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Reversing the reduction: some possible worries

Can thermodynamics be reconciled with classical mechanics?

Classical mechanics is (in a sense) incomplete. Sure, Hamilton’s
equations allow one the calculate all possible paths for a particle in a
certain potential. But just like how logic doesn’t tell us which
propositions are true, Classical mechanics doesn’t tell us which path is
the case.

Thermodynamic phenomena may in part reflect regularities in initial
conditions. If so, it is not surprising that these regularities cannot be
derived from classical mechanics.

If statistical mechanics doesn’t explain thermodynamics, isn’t statistical
mechanics obsolete?

Statistical mechanics above all advances thermodynamics, providing
methods to e.g. compute equations of state instead of having to
derive them from empirical observations.
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Summary

The reduction from Thermodynamics to Statistical Mechanics is not
a clear-cut case.

Further, sharp formulations of Thermodynamics and (particularly)
Statistical Mechanics are sparse.

Tolman’s formulation explicitly adopts a subjective approach towards
probabilities (ensembles).

This view is problematic when interpreting established relations
between Thermodynamics and Statistical Mechanics as reduction
relations.

Give up the reduction and reverse it: take Thermodynamics to inform
probabilities in Statistical Mechanics.

Thank You!
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