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Primitive concepts in QM

Born Postulate

If

1 the state of a quantum system is represented by the density
operator ρ and

2 a measurement of an observable A associated with the
operator A is performed,

then the probability to obtain a result in the set ∆ ⊂ R is given by

Tr (ρµA(∆))

with µA the PVM associated with A.

“The concept of ‘measurement’ becomes so fuzzy on reflection
that it is quite surprising to have it appearing in physical theory at
the most fundamental level...” - Bell 1981
...And so for ‘probability’...
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Reconstructing (a part of) quantum mechanics

Can the Born rule be derived from the other postulates of quantum
theory with the aid of a conceptual assumptions on what
probability is?

Find an X such that QM\BR ∧X→ BR.

Find necessary aspects of X .

Bottom up:

Introduce ontology by solving measurement problem.

Derive BR.

Top down:

Construct formal framework that captures empirical aspects of
QM. (Quantum Logic)

Introduce conceptual notion of probability. Derive BR.
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How does QM violate Bell inequalities?

Source Independence: ρMA,MB
(λ) = ρ(λ)

Parameter Independence: PMA,MB
(A = i |λ) = PMA

(A = i |λ)

Outcome Independence:
PMA,MB

(A = i |B = j , λ) = PMA,MB
(A = i |λ)

PMA1
,MB1

(A1 = B1) ≤PMA1
,MB2

(A1 = B2) + PMA2
,MB1

(A2 = B1)

+ PMA2
,MB2

(A2 = B2)

Earman (1986): “in the first instance, the issue of locality is a red
herring. [. . . ] The impossibility emerges from the X – the
existence of a phase space representation – whether or not Nature
operates locally or at a distance.”
Fine (1982): Bell’s theorem imposes “requirements to make well
defined precisely those probability distributions for noncommuting
observables whose rejection is the very essence of quantum
mechanics”
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How does QM violate Bell inequalities? 2

Bell inequality as a ‘logical’ consequence:

P(A1 ∧ B1) ≤ P(A1 ∧ B2) + P(A2 ∧ B1) + P(¬A2 ∧ ¬B2)

Proof:
P(A1 ∧ B1) =P(A1 ∧ B1 ∧ (B2 ∨ ¬B2))

=P((A1 ∧ B1 ∧ B2) ∨ (A1 ∧ B1 ∧ ¬B2))

=P(A1 ∧ B1 ∧ B2) + P(A1 ∧ B1 ∧ ¬B2)

≤P(A1 ∧ B2) + P(A1 ∧ B1 ∧ ¬B2)

≤ . . . ≤ P(A1 ∧ B2) + P(A2 ∧ B1) + P(¬A2 ∧ ¬B2)

-) Putnam (1968): in quantum logic distributivity is not valid.
-) Griffiths (2013): new quantum logic has “single framework rule”.
-) Khrennikov (2015): derivation assumes Kolmogorov’s probability.

-) Hermens (2008): derivation not valid in intuitionistic logic.
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Quantum logic and the Born rule

A success story

Suppose

The lattice of projection operators provides the correct ‘logic’
for QM,

and

One finds an argument to motivate P(1) = 1 and

P(P1 ∨ P2) = P(P1) + P(P2)

whenever P1⊥P2,

then

Gleason’s Theorem states P is a probability function iff it
satisfies the Born rule.
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Modern version of the success story

Wilce (2012): “If we put aside scruples about ‘measurement’ as a
primitive term in physical theory, and accept a principled
distinction between ‘testable’ and non-testable properties, then the
fact that L(H) is not Boolean is unremarkable”

Bub (2007): “The rejection of both dogmas, as I will argue in the
following section, leads to an information-theoretic interpretation
of quantum mechanics. On this interpretation, the structure of
Hilbert space, i.e., the non-Boolean algebra of Hilbert space
subspaces, defines the structure of a quantum event space”

Why are the (closed) linear subspaces worthy of the name
“event” or “ property”?

The primitive use of “probability” has merely been replaced.
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Revisiting Birkhoff and von Neumann

“The object of the present paper is to discover what
logical structure one may hope to find in physical theories
which, like quantum mechanics, do not conform to
classical logic” - BvN 1936

Method: establishing a connection between “experimental
propositions” that live in “observation-spaces” and subsets of
the “phase-space”.

Phase-space: This is the Hilbert space H.

Observation-space: Let A1, . . . ,An be compatible
observables with spectra σ(A1), . . . , σ(An), then the
corresponding observation-space is

σ(A1)× . . .× σ(An),

the set of possible outcomes.
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Revisiting BvN 2: Establishing a connection

How to establish a connection. . .

Definition: The mathematical representative of an
experimental proposition ∆ ⊂ σ(A1)× . . .× σ(An) is the set
of states in H for which the probability of finding a result in
∆ given a measurement of A1, . . . ,An equals 1.

Simple case n = 1:

σ(A) ⊃ ∆ 7→ µA(∆)H

with µA the PVM associated with A.

More generally, these are the states in the subspace ∨
{(a1,...,an)∈∆}

n∧
i=1

µAi
({ai})

H.
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Revisiting BvN 3: The whole story?

P(σ(A1)× . . .× σ(An)) L(H) = {P : H → H|P = P∗ = P2}

P(σ(B1)× . . .× σ(Bm))

The association defines for every observation space a lattice
homomorphism taking experimental propositions to projection
operators.

Running over all observation spaces one ranges over the
entirety of L(H).

Does L(H) give the logic of all experimental propositions?

Two background assumptions can be identified for getting a
“yes”:

1 It is unproblematic to ‘forget the measurement context’ when
correlating an experimental proposition to the phase-space.

2 Disjunctions, conjunctions and negations of experimental
propositions are again experimental propositions.
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What is an experimental proposition?

BvN don’t go deep into this question, but at least seem to
assume that it is a proposition that can serve as a prediction
and can be tested.

Inspiration from Bohr (1948):

“all well-defined experimental evidence, even if it cannot
be analyzed in terms of classical physics, must be
expressed in ordinary language making use of common
logic”

Experimental propositions should thus be expressible in
ordinary language.

What kind of expressions would fit well with the program of
BvN?
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What is an experimental proposition? 2

When considering a single observation-space the observation
itself is presupposed.

Example: σ(A) = {0, 1}, then µA(0) ∨ µA(1) is considered a
tautology.

These presuppositions seem to be neglected when considering
multiple observation-spaces.

Example: σ(A) = σ(B) = {0, 1}, [A,B] 6= 0

µB(0) = µB(0) ∧ (µA(0) ∨ µA(1)) =

(µB(0) ∧ µA(0)) ∨ (µB(0) ∧ µA(1)) = 0.

The two assumptions:

1 It is unproblematic to ‘forget the measurement context’ when
correlating an experimental proposition to the phase-space.

2 Disjunctions, conjunctions and negations of experimental
propositions are again experimental propositions.
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Back to the drawing board: Empiricist quantum logic

What kind of propositions do we need?

The Born rule in a formula:

P(MA(∆)|MA, ρ) = Tr (ρµA(∆))

with

MA = “A is measured”,

MA(∆) = “A is measured and the result lies in ∆”.

IEA (Idealized Experimenter Assumption):
Every measurement has an outcome: MA = MA(σ(A)).
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A preorder for elementary propositions

Total set of elementary propositions:

EPQM = {MA(∆) ; A = A∗,∆ ⊂ σ(A)}.

LMR (Law-Measurement Relation):
If A2 = f (A1), then MA1(∆1) implies MA2(f (∆1)).
Leads to the preorder

MA1(∆1) ≤ MA2(∆2) iff Alg(A1) ⊃ Alg(A2)

and µA1(∆1) ≤ µA2(∆2)

IEA (Idealized Experimenter Assumption):
Every measurement has an outcome (MA(∅) = ⊥).
Leads to the preorder

MA1(∆1) ≤ MA2(∆2) iff Alg(A1) ⊃ Alg(A2)

and µA1(∆1) ≤ µA2(∆2)

or µA1(∆1) = 0.
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A lattice of elementary propositions

SQM := EPQM/ ∼=
{

(A,P)
∣∣∣ A Abelian algebra,
P=P∗=P2∈A, P 6=0

}
∪ {⊥}.

Properties:

(A1,P1) ≤ (A2,P2) iff A1 ⊃ A2, P1 ≤ P2,

(A1,P1) ∧ (A2,P2) =

{
(Alg(A1,A2),P1 ∧ P2) [A1,A2] = 0,

⊥ else,

(A1,P1)∨(A2,P2) =
(
A1 ∩ A2,

∧
{P ∈ A1 ∩ A2|P ≥ P1 ∨ P2}

)
.

The lattice is non-distributive.

Disjunctions are problematic (e.g. Mx ∨Mp = >).

Solution: “just add the missing propositions”.
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Towards empiricist quantum logic

Find lattice LQM ⊃ SQM such that ∨ reads as OR.

Key observation for elements of SQM :

(A,P) = OR
A′∈A

(A′,P ′), P ′ =

{
P, A′ ⊃ A
0, else.

and (A,P1)OR(A,P2) = (A,P1 ∨ P2).

Then

(A1,P1)OR(A2,P2) = OR
A′∈A

(A′,P ′1∨P ′2), P ′i =

{
Pi , A′ ⊃ Ai

0, else.

LQM is the lattice with objects of the form

OR
A∈A

(A,PA).
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The empiricist quantum logic

LQM is the lattice with objects of the form

OR
A∈A

(A,PA).

LQM := {S : A→ L(H)|S(A) ∈ A} , S ' OR
A∈A

(A,S(A)).

This is a Boolean lattice with properties:

(S1 ∧ S2)(A) = S1(A) ∧ S2(A)

(S1 ∨ S2)(A) = S1(A) ∨ S2(A)

(¬S)(A) = S(A)⊥

And incorporates elementary experimental propositions by the rule

MA(∆) 7→ S(Alg(A),µA(∆)), S(A,P)(A′) :=

{
P A ⊂ A′

0 else.
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Probability on LQM

Definition

A conditional probability function (c.p.f.) on LQM is a collection
{P(.|A)|A ∈ A} of probability functions on LQM such that
P
(
S(A,1)

∣∣A) = 1 for all A.

Every density operator ρ defines a c.p.f. on LQM .

A c.p.f. P follows the Born rule iff for every A and P:

P
(
S(A1,P)

∣∣A) = P
(
S(A2,P)

∣∣A) ∀A1,A2 ⊃ A.

An assumption of non-contextuality is required to derive the
Born rule.
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Defending non-contextuality

NC If µA1(∆1) = µA2(∆2), then MA1(∆1) and MA2(∆2) signify
the same event.

The Born rule seems the only aspect of QM that justifies NC.
Motivating NC requires assumptions from outside QM.
Introduce some metaphysics:

Wallace’s many worlds: contextuality violates “state
supervenience”.

Bub’s minimalist metaphysics: quantum probabilities are
Humean chances. NC = best system.

Or epistemic constraints:

Probability functions should be continuous w.r.t.
measurement outcomes and setups. + something.

Other clever rationality arguments.

Or...

Why bother? How important is NC for QM?
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