Kochen-Specker: Beyond Quantum Theory?

March 3, 2016

Ronnie Hermens

R. Hermens Kochen-Specker: Beyond Quantum Theory?

- What does the Kochen-Specker theorem state?
- "Nullifying" the theorem: the finite precision argument
- Reconsidering non-contextuality
- Beyond quantum theory?

In conversation: There is no 2-valued homomorphism on the lattice of projection operators of a Hilbert space of dimension greater than 2.

Stanford encyclopedia: The theorem demonstrates the impossibility of a certain type of interpretation of QM in terms of hidden variables.

Wikipedia: The impossibility that quantum mechanical observables represent "elements of physical reality". More specifically, the theorem excludes hidden variable theories that require *elements of physical reality to be non-contextual* (i.e. independent of the measurement arrangement).

Theorem

Let \mathcal{H} be a Hilbert space with dim $(\mathcal{H}) > 2$ and \mathcal{O}_{sa} the set of self-adjoint operators. Then there is no function $\lambda : \mathcal{O}_{sa} \to \mathbb{R}$ such that

$$\lambda(A) \in \sigma(A),$$

((f(A)) = f(\lambda(A)), (1)

for every $A\in \mathcal{O}_{\mathrm{sa}}$, and real-valued Borel functions f .

Why care? The existence of λ is a "natural" requirement for any hidden variable interpretation. Three types of assumptions:

- Hidden variables
- Onstraints from quantum mechanics
- O Mathematical niceties

$$HV \wedge QM_{KS} \wedge MN \rightarrow \bot$$
 (2)

The assumptions

Hidden variables

- VD Every observable $\mathcal{A} \in Obs$ has a unique definite value at all times.
- FM A measurement of \mathcal{A} reveals the value of \mathcal{A} just before the measurement.

Constraints from QM

- VP A measurement of \mathcal{A} reveals a value *a* in $\sigma(A)$.
- WCoP If A₁, A₂ correspond to commuting operators A₁, A₂, then ∃ comeasurable observables A'₁, A'₂ corresponding to A₁, A₂.
 EFR If A₁, A₂ are comeasurable and A₂ = f(A₁), then a₂ = f(a₁). Mathematical niceties
 - NC Every $A \in \mathcal{O}_{sa}$ is associated with at most one $\mathcal{A} \in Obs$.
 - IP Every $A \in \mathcal{O}_{sa}$ is associated with at least one $\mathcal{A} \in Obs$.

"Nullifying" the theorem: The finite precision argument For some observables [sic], in fact for the majority of them (such as xyp_z), nobody seriously believes that a measuring apparatus exists. – Wigner 1963

Spin measurements on a spin-1 particle can be measured

$$\begin{bmatrix} S_{r_1}^2, S_{r_2}^2 \end{bmatrix} = 0 \text{ iff } r_1 \perp r_2, S_x^2 + S_y^2 + S_z^2 = 2.$$
(3)

 $IP \mapsto IP_{KS}$: There is a finite set D_{KS} such that S_r^2 corresponds to an observable for every $r \in D_{KS}$.

Rejecting IP/Coloring \mathbb{S}^2

Reconsidering non-contextuality

What is contextuality?

It was tacitly assumed that measurement of an observable must yield the same value independently of what other measurements may be made simultaneously. – Bell 1966

Suppose

$$[A, B] = [A, C] = 0 \neq [B, C]$$
(4)

and joint measurement of (A, B) yields value a for A, then

if instead (A, C) had been measured,

then the outcome would also be a.

- \neg NC There are multiple observable corresponding to A, one for each context.
- $\neg VD$ A has not a *unique* definite value, but one for every context.
 - \neg IP *A* has the same value in every context, but can be measured in at most one context.

The Klyachko inequality

 $\mathbb{E}\left(S_{r_1}^2\right) + \mathbb{E}\left(S_{r_2}^2\right) + \mathbb{E}\left(S_{r_3}^2\right) + \mathbb{E}\left(S_{r_4}^2\right) + \mathbb{E}\left(S_{r_5}^2\right) \ge 3 \qquad (5)$

Violating the Klyachko inequality

Measurement non-contextuality: if

$$\mathbb{P}[A_1 = a|P] = \mathbb{P}[A_2 = a|P]$$

for all outcomes *a* and preparations *P*, then $A_1 = A_2$.

- Quantification over P assumes QM.
- Equality of probabilities cannot be verified.

Beyond quantum theory?

What do violations show?

Contextuality is not the essential issue. Instead, the Bell-KS theorem establishes the existence of a fundamental limitation on our ability to determine the values of the hidden variables by measurement. – Appleby 2004

But how to make this idea precise...