Kochen-Specker: Beyond Quantum Theory?

March 3, 2016

Ronnie Hermens

Menu

(1) What does the Kochen-Specker theorem state?
(2) "Nullifying" the theorem: the finite precision argument
(3) Reconsidering non-contextuality
(4) Beyond quantum theory?

What is the Kochen-Specker theorem?

In conversation: There is no 2-valued homomorphism on the lattice of projection operators of a Hilbert space of dimension greater than 2.
Stanford encyclopedia: The theorem demonstrates the impossibility of a certain type of interpretation of QM in terms of hidden variables.
Wikipedia: The impossibility that quantum mechanical observables represent "elements of physical reality". More specifically, the theorem excludes hidden variable theories that require elements of physical reality to be non-contextual (i.e. independent of the measurement arrangement).

Theorem

Let \mathcal{H} be a Hilbert space with $\operatorname{dim}(\mathcal{H})>2$ and $\mathcal{O}_{\text {sa }}$ the set of self-adjoint operators. Then there is no function $\lambda: \mathcal{O}_{\text {sa }} \rightarrow \mathbb{R}$ such that

$$
\begin{align*}
\lambda(A) & \in \sigma(A) \tag{1}\\
\lambda(f(A)) & =f(\lambda(A))
\end{align*}
$$

for every $A \in \mathcal{O}_{\text {sa }}$, and real-valued Borel functions f.
Why care? The existence of λ is a "natural" requirement for any hidden variable interpretation. Three types of assumptions:
(1) Hidden variables
(2) Constraints from quantum mechanics
(3) Mathematical niceties

$$
\begin{equation*}
\mathrm{HV} \wedge \mathrm{QM}_{\mathrm{KS}} \wedge \mathrm{MN} \rightarrow \perp \tag{2}
\end{equation*}
$$

Hidden variables
VD Every observable $\mathcal{A} \in O b s$ has a unique definite value at all times.
FM A measurement of \mathcal{A} reveals the value of \mathcal{A} just before the measurement.
Constraints from QM
OP Every observable $\mathcal{A} \in O 6 s$ is associated with an operator $A \in \mathcal{O}_{\text {sa }}$.
VP A measurement of \mathfrak{A} reveals a value a in $\sigma(A)$.
WCoP If $\mathcal{A}_{1}, \mathcal{A}_{2}$ correspond to commuting operators A_{1}, A_{2}, then \exists comeasurable observables $\mathfrak{A}_{1}^{\prime}, \mathfrak{A}_{2}^{\prime}$ corresponding to A_{1}, A_{2}.
EFR If $\mathcal{A}_{1}, \mathcal{A}_{2}$ are comeasurable and $A_{2}=f\left(A_{1}\right)$, then $a_{2}=f\left(a_{1}\right)$.
Mathematical niceties
NC Every $A \in \mathcal{O}_{\text {sa }}$ is associated with at most one $\mathcal{A} \in O$ obs.
IP Every $A \in \mathcal{O}_{\text {sa }}$ is associated with at least one $\mathcal{A} \in O 6 s$.

"Nullifying" the theorem: The finite precision argument

Defending IP

For some observables [sic], in fact for the majority of them (such as $x y p_{z}$), nobody seriously believes that a measuring apparatus exists. - Wigner 1963

Spin measurements on a spin-1 particle can be measured

$$
\begin{gather*}
{\left[S_{r_{1}}^{2}, S_{r_{2}}^{2}\right]=0 \text { iff } r_{1} \perp r_{2}} \\
S_{x}^{2}+S_{y}^{2}+S_{z}^{2}=2 \tag{3}
\end{gather*}
$$

$\mathrm{IP} \mapsto \mathrm{IP}_{\mathrm{KS}}$: There is a finite set D_{KS} such that S_{r}^{2} corresponds to an observable for every $r \in D_{\mathrm{KS}}$.

Rejecting IP/Coloring \mathbb{S}^{2}

$$
\left(S_{x}^{2}, S_{y}^{2}, S_{z}^{2}\right) \in\{(0,1,1),(1,0,1),(1,1,0)\}
$$

Meyer 1999: $\mathbb{S}^{2} \cap \mathbb{Q}^{3}$ is colorable.
Clifton \& Kent 2000: Born rule can be recovered.

Reconsidering non-contextuality

What is contextuality?

It was tacitly assumed that measurement of an observable must yield the same value independently of what other measurements may be made simultaneously. - Bell 1966

Suppose

$$
\begin{equation*}
[A, B]=[A, C]=0 \neq[B, C] \tag{4}
\end{equation*}
$$

and joint measurement of (A, B) yields value a for A, then
if instead (A, C) had been measured, then the outcome would also be a.
\neg NC There are multiple observable corresponding to A, one for each context.
$\neg \mathrm{VD} A$ has not a unique definite value, but one for every context.
\neg IP A has the same value in every context, but can be measured in at most one context.

The Klyachko inequality

$S_{r_{1}}^{2}$	$S_{r_{2}}^{2}$	$S_{r_{3}}^{2}$	$S_{r_{4}}^{2}$	$S_{r_{5}}^{2}$	Sum
1	1	1	1	1	5
0	1	1	1	1	4
\vdots	\vdots	\vdots	\vdots	\vdots	\vdots
1	1	1	1	0	4
0	1	0	1	1	3
\vdots	\vdots	\vdots	\vdots	\vdots	\vdots
1	1	0	1	0	3

$$
\begin{equation*}
\mathbb{E}\left(S_{r_{1}}^{2}\right)+\mathbb{E}\left(S_{r_{2}}^{2}\right)+\mathbb{E}\left(S_{r_{3}}^{2}\right)+\mathbb{E}\left(S_{r_{4}}^{2}\right)+\mathbb{E}\left(S_{r_{5}}^{2}\right) \geq 3 \tag{5}
\end{equation*}
$$

Violating the Klyachko inequality

$\neg \mathrm{NC}$

$\neg \mathrm{IP}$

Measurement non-contextuality: if

$$
\mathbb{P}\left[A_{1}=a \mid P\right]=\mathbb{P}\left[A_{2}=a \mid P\right]
$$

for all outcomes a and preparations P, then $A_{1}=A_{2}$.

- Quantification over P assumes QM.
- Equality of probabilities cannot be verified.

Beyond quantum theory?

What do violations show?

Contextuality is not the essential issue. Instead, the Bell-KS theorem establishes the existence of a fundamental limitation on our ability to determine the values of the hidden variables by measurement. Appleby 2004

But how to make this idea precise...

