

2 March 2017 Ronnie Hermens

faculty of philosophy

 α α

Ronnie Hermens How ψ -ontic are ψ [-ontic ontic models?](#page-78-0)

What does it mean for an ontic model to be ψ -ontic?

a mills.

∢ 伊 ▶ ∢ 舌 **IN** ∢ 重→

重

What does it mean for an ontic model to be ψ -ontic?

1 The quantum state is real.

 \leftarrow \Box

4 A 6 4 F 6

メ ヨ ト

扂

What does it mean for an ontic model to be ψ -ontic?

- **1** The quantum state is real.
- **2** For all pairs of quantum states $|\psi\rangle$, $|\phi\rangle$, for all corresponding probability measures $\mu \in \Delta_{\psi}$, $\nu \in \Delta_{\phi}$ in the ontic model, the variational distance

$$
D(\mu,\nu):=\sup_{\Omega\in\Sigma}|\mu(\Omega)-\nu(\Omega)|
$$

equals 1.

What does it mean for an ontic model to be ψ -ontic?

- **1** The quantum state is real.
- **2** For all pairs of quantum states $|\psi\rangle$, $|\phi\rangle$, for all corresponding probability measures $\mu \in \Delta_{\psi}$, $\nu \in \Delta_{\phi}$ in the ontic model, the variational distance

$$
D(\mu,\nu):=\sup_{\Omega\in\Sigma}|\mu(\Omega)-\nu(\Omega)|
$$

equals 1.

A student bursts into the study of his professor and calls out: "Dear professor, dear professor! I have discovered a perpetual motion of the second kind!" The professor scarcely takes his eyes of his book and curtly replies: "Come back when you have found a neighborhood U of a state x_0 of such a kind that every $x \in U$ is connected with x_0 by an adiabat." – Walter

- **4** Ontic models framework.
- **2** When is an ontic model ψ -ontic?
- **3** The Kochen-Specker Theorem.
- **4** The ontic models of Meyer, Clifton and Kent (MKC).
- **5** The MKC models are ψ -ontic.
- **The MKC models are not very** ψ **-ontic.**

 \leftarrow

A \sim 重 \sim 国 重り

ă

 299

Assuming the success of efforts to accomplish a complete physical description, the statistical quantum theory would, within the framework of future physics, take an approximately analogous position to the statistical mechanics within the framework of classical mechanics. – Einstein

 $2Q$

 \rightarrow \equiv \rightarrow

Assuming the success of efforts to accomplish a complete physical description, the statistical quantum theory would, within the framework of future physics, take an approximately analogous position to the statistical mechanics within the framework of classical mechanics. – Einstein

Do all phenomena described by SM also have a purely classical mechanical description?

Assuming the success of efforts to accomplish a complete physical description, the statistical quantum theory would, within the framework of future physics, take an approximately analogous position to the statistical mechanics within the framework of classical mechanics. – Einstein

- Do all phenomena described by SM also have a purely classical mechanical description?
- **Theorems that constraint ontic models characterize the** possible reducing theories for quantum [me](#page-8-0)[ch](#page-10-0)[a](#page-5-0)[n](#page-6-0)[i](#page-9-0)[cs](#page-10-0)[.](#page-0-0)

つへへ

 \leftarrow \Box

→ イ団 ト イ ヨ ト イ ヨ ト

重

 299

Operational model $(\mathcal{P},\mathcal{M})$

 $P \in \mathcal{P}$ is a preparation, $M \in \mathcal{M}$ is a measurement,

 $P(m|M, P)$ probability of outcome m for measurement M performed on a system prepared according to P.

Quantum mechanics as an operational model:

- $\mathcal P$ Set of quantum states,
- M Set of self-adjoint operators,

$$
\mathbb{P}(a|A,|\psi\rangle)=\left\langle\psi\left|P_a^A\right|\psi\right\rangle.
$$

 \mathcal{A} \mathcal{F} \mathcal{F} \mathcal{A} \mathcal{F} \mathcal{F}

Ontic model (Λ, Π, Ξ)

 $\lambda \in \Lambda$ is an ontic state, $\xi \in \Xi$ is a Markov kernel $\mu \in \Pi$ is a probability measure, from Λ to $\Omega_{\mathcal{E}}$.

 $\forall (P, M)$ there exists (μ_P, ξ_M) such that

$$
\mathbb{P}(m|M,P)=\int_{\Lambda}\xi_{M}(m|\lambda)\,\mathrm{d}\mu_{P}(\lambda).
$$

Theorem: An ontic model always exists

"Proof":

$$
\Lambda=\mathcal{P}, \ \mu_P(\{P'\})=\delta_{PP'}, \ \xi_M(m|P)=\mathbb{P}(m|M,P).
$$

 \mathbf{A} \mathbf{B} \mathbf{B} \mathbf{A} \mathbf{B} \mathbf{B}

The ontic state tells us what the quantum state is

 \leftarrow \Box

 \sim

 \equiv \rightarrow

The ontic state tells us what the quantum state is

• There exists a function $f : \Lambda \to \mathcal{P}$ $f(\lambda)$ is the true quantum state of the system, (bridge law as identity relation),

The ontic state tells us what the quantum state is

The Quantum
State is
$$
14>7
$$

- There exists a function $f : \Lambda \to \mathcal{P}$ $f(\lambda)$ is the true quantum state of the system, (bridge law as identity relation),
- Compatibility with quantum mechanical notion of quantum states:

$$
\mu_{\psi}(f^{-1}(|\psi\rangle))=1.
$$

 $4.57 + 4.77 +$

 $\textbf{D} \;\; \exists f : \textsf{\textit{A}} \rightarrow \mathcal{P} \; \textsf{such that} \; \forall \ket{\psi} \; \mu_\psi(f^{-1}(\ket{\psi})) = 1.$

イロメ イ母メ イヨメ イヨメー

重

 $\textbf{D} \;\; \exists f : \textsf{\textit{A}} \rightarrow \mathcal{P} \; \textsf{such that} \; \forall \ket{\psi} \; \mu_\psi(f^{-1}(\ket{\psi})) = 1.$

Pusey, Barrett, Rudolph:

An important step towards the derivation of our result is the idea that the quantum state is physical if distinct quantum states correspond to non-overlapping distributions for λ

 $\textbf{D} \;\; \exists f : \textsf{\textit{A}} \rightarrow \mathcal{P} \; \textsf{such that} \; \forall \ket{\psi} \; \mu_\psi(f^{-1}(\ket{\psi})) = 1.$

Pusey, Barrett, Rudolph:

An important step towards the derivation of our result is the idea that the quantum state is physical if distinct quantum states correspond to non-overlapping distributions for λ

2 If $|\psi\rangle \neq |\phi\rangle$, then μ_{ψ} and μ_{ϕ} are non-overlapping.

Definition

An ontic model is ψ -ontic if for all $|\psi\rangle$, $|\phi\rangle \in \mathcal{P}$

$$
D(\mu_{\psi}, \mu_{\phi}) = \sup_{\Omega \in \Sigma} |\mu_{\psi}(\Omega) - \mu_{\phi}(\Omega)| = 1.
$$

Definition

An ontic model is ψ -ontic if for all $|\psi\rangle$, $|\phi\rangle \in \mathcal{P}$

$$
D(\mu_{\psi}, \mu_{\phi}) = \sup_{\Omega \in \Sigma} |\mu_{\psi}(\Omega) - \mu_{\phi}(\Omega)| = 1.
$$

→ 伊 → → 目 →

 \leftarrow \Box

重

→ 唐 ト

Definition

An ontic model is ψ -ontic if for all $|\psi\rangle$, $|\phi\rangle \in \mathcal{P}$

$$
D(\mu_{\psi}, \mu_{\phi}) = \sup_{\Omega \in \Sigma} |\mu_{\psi}(\Omega) - \mu_{\phi}(\Omega)| = 1.
$$

If P also contains mixed states ψ -ontic theorems no longer apply.

 \mathcal{A} \mathcal{F} \mathcal{F} \mathcal{A} \mathcal{F} \mathcal{F}

TELE

Definition

An ontic model is P-ontic if for all $P,P' \in \mathcal{P}$

$$
D(\mu_P, \mu_{P'}) = \sup_{\Omega \in \Sigma} |\mu_P(\Omega) - \mu_{P'}(\Omega)| = 1.
$$

If P also contains mixed states ψ -ontic theorems no longer apply.

 $\left\{ \begin{array}{ccc} \mathcal{L}_{11} & \mathcal{L}_{22} & \mathcal{L}_{23} & \mathcal{L}_{24} & \mathcal{L}_{25} \end{array} \right.$

Definition

An ontic model is P-ontic if for all $P,P' \in \mathcal{P}$

$$
D(\mu_P, \mu_{P'}) = \sup_{\Omega \in \Sigma} |\mu_P(\Omega) - \mu_{P'}(\Omega)| = 1.
$$

- **If** P also contains mixed states ψ -ontic theorems no longer apply.
- In statistical mechanics:
	- \bullet If $\mathcal P$ is the set of micro-canonical ensembles, then classical mechanics is P-ontic.
	- \bullet If P also contains canonical ensembles, then classical mechanics is P-epistemic.

Definition

An ontic model is P-ontic if for all $P,P' \in \mathcal{P}$

$$
D(\mu_P, \mu_{P'}) = \sup_{\Omega \in \Sigma} |\mu_P(\Omega) - \mu_{P'}(\Omega)| = 1.
$$

- **If** P also contains mixed states ψ -ontic theorems no longer apply.
- In statistical mechanics:
	- \bullet If P is the set of micro-canonical ensembles, then classical mechanics is P-ontic.
	- \bullet If P also contains canonical ensembles, then classical mechanics is P-epistemic.

Is just the energy ontic, or also the associated micro-canonical ensemble?

- $\textbf{1} \;\; \exists f : \textsf{\textit{A}} \rightarrow \mathcal{P} \; \textsf{such that} \; \forall \ket{\psi} \; \mu_\psi(f^{-1}(\ket{\psi})) = 1.$
- **2** If $|\psi\rangle \neq |\phi\rangle$, then μ_{ψ} and μ_{ϕ} are non-overlapping.

Definition

An ontic model is ψ -ontic if for all $|\psi\rangle$, $|\phi\rangle \in \mathcal{P}$

$$
D(\mu_{\psi}, \mu_{\phi}) = \sup_{\Omega \in \Sigma} |\mu_{\psi}(\Omega) - \mu_{\phi}(\Omega)| = 1.
$$

 \mathcal{A} \mathcal{A} \mathcal{B} \mathcal{A} \mathcal{B} \mathcal{B}

- $\textbf{1} \;\; \exists f : \textsf{\textit{A}} \rightarrow \mathcal{P} \; \textsf{such that} \; \forall \ket{\psi} \; \mu_\psi(f^{-1}(\ket{\psi})) = 1.$
- **2** If $|\psi\rangle \neq |\phi\rangle$, then μ_{ψ} and μ_{ϕ} are non-overlapping.

Definition

An ontic model is ψ -ontic if for all $|\psi\rangle$, $|\phi\rangle \in \mathcal{P}$

$$
D(\mu_{\psi}, \mu_{\phi}) = \sup_{\Omega \in \Sigma} |\mu_{\psi}(\Omega) - \mu_{\phi}(\Omega)| = 1.
$$

• Clearly $1\Rightarrow 2$, but does $2\Rightarrow 1$?

 \mathcal{A} and \mathcal{A} . The set

- $\textbf{1} \;\; \exists f : \textsf{\textit{A}} \rightarrow \mathcal{P} \; \textsf{such that} \; \forall \ket{\psi} \; \mu_\psi(f^{-1}(\ket{\psi})) = 1.$
- **2** If $|\psi\rangle \neq |\phi\rangle$, then μ_{ψ} and μ_{ϕ} are non-overlapping.

Definition

An ontic model is ψ -ontic if for all $|\psi\rangle$, $|\phi\rangle \in \mathcal{P}$

$$
D(\mu_{\psi}, \mu_{\phi}) = \sup_{\Omega \in \Sigma} |\mu_{\psi}(\Omega) - \mu_{\phi}(\Omega)| = 1.
$$

- Clearly $1\Rightarrow 2$, but does $2\Rightarrow 1$?
- Intuitively: take $\Omega=\Lambda_{\psi}:=f^{-1}(|\psi\rangle).$
- But f need not exist for ψ -ontic models.

- $\textbf{1} \;\; \exists f : \textsf{\textit{A}} \rightarrow \mathcal{P} \; \textsf{such that} \; \forall \ket{\psi} \; \mu_\psi(f^{-1}(\ket{\psi})) = 1.$
- **2** If $|\psi\rangle \neq |\phi\rangle$, then μ_{ψ} and μ_{ϕ} are non-overlapping.

Definition

An ontic model is ψ -ontic if for all $|\psi\rangle$, $|\phi\rangle \in \mathcal{P}$

$$
D(\mu_{\psi}, \mu_{\phi}) = \sup_{\Omega \in \Sigma} |\mu_{\psi}(\Omega) - \mu_{\phi}(\Omega)| = 1.
$$

- Clearly $1\Rightarrow 2$, but does $2\Rightarrow 1$?
- Intuitively: take $\Omega=\Lambda_{\psi}:=f^{-1}(|\psi\rangle).$
- But f need not exist for ψ -ontic models.

Case study: The MKC hidden variable models.

Hidden variable models are traditionally concerned with the question:

> Do measurements simply reveal the value of an observable, or is this value in some sense 'created' by the act of measurement?

A + + = +

ALCOHOL:

Hidden variable models are traditionally concerned with the question:

> Do measurements simply reveal the value of an observable, or is this value in some sense 'created' by the act of measurement?

• Ontic models do not provide an answer.

 $\xi(m|M,\lambda)$ provides a probability and λ does little to explain the transition from potential to actual.

Hidden variable models are traditionally concerned with the question:

> Do measurements simply reveal the value of an observable, or is this value in some sense 'created' by the act of measurement?

• Ontic models do not provide an answer.

 $\xi(m|M,\lambda)$ provides a probability and λ does little to explain the transition from potential to actual.

• Determinate ontic states do give an answer:

 $\xi(m|M, \lambda) \in \{0, 1\}.$

Hidden variable models are traditionally concerned with the question:

> Do measurements simply reveal the value of an observable, or is this value in some sense 'created' by the act of measurement?

• Ontic models do not provide an answer.

 $\xi(m|M,\lambda)$ provides a probability and λ does little to explain the transition from potential to actual.

• Determinate ontic states do give an answer:

 $\xi(m|M, \lambda) \in \{0, 1\}.$

The MKC models are constructed precisely to show the logical possibility of a non-contextual hidden variable theory. Allegedly, this possibility was ruled out by the Kochen[-Sp](#page-31-0)[ec](#page-33-0)[k](#page-28-0)[e](#page-29-0)[r](#page-32-0) [t](#page-33-0)[he](#page-0-0)[ore](#page-78-0)[m](#page-0-0)[.](#page-78-0)

 $\alpha \alpha$

Assigning values to observables

For every non-degenerate self-adjoint operator A, there is a unique orthonormal basis

$$
\mathcal{B}_A = \{\ket{e_1},\ldots,\ket{e_n}\}
$$

such that

$$
A = a_1 |e_1\rangle + \ldots + a_n |e_n\rangle
$$

Assigning values to observables

For every non-degenerate self-adjoint operator A, there is a unique orthonormal basis

$$
\mathcal{B}_A = \{\ket{e_1},\ldots,\ket{e_n}\}
$$

such that

$$
A = a_1 |e_1\rangle + \ldots + a_n |e_n\rangle
$$

• Assigning a definite value a_i to A corresponds to selecting the vector $|e_i\rangle$ in the basis B_A .

For every non-degenerate self-adjoint operator A, there is a unique orthonormal basis

$$
\mathcal{B}_A = \{\ket{e_1},\ldots,\ket{e_n}\}
$$

such that

$$
A = a_1 |e_1\rangle + \ldots + a_n |e_n\rangle
$$

• Assigning a definite value a_i to A corresponds to selecting the vector $|e_i\rangle$ in the basis B_A .

For every non-degenerate self-adjoint operator A and every function f, the observables $f(A)$ and A can be measured jointly and the outcome for $f(A)$ is $f(a_i)$.

 \mathcal{A} $\mathcal{F}^{\mathcal{A}}$ \mathcal{B} \mathcal{A} $\mathcal{B}^{\mathcal{A}}$ $\mathcal{B}^{\mathcal{A}}$
For every non-degenerate self-adjoint operator A, there is a unique orthonormal basis

$$
\mathcal{B}_A = \{\ket{e_1}, \ldots, \ket{e_n}\}
$$

such that

$$
A = a_1 |e_1\rangle + \ldots + a_n |e_n\rangle
$$

• Assigning a definite value a_i to A corresponds to selecting the vector $|e_i\rangle$ in the basis B_A .

For every non-degenerate self-adjoint operator A and every function f , the observables $f(A)$ and A can be measured jointly and the outcome for $f(A)$ is $f(a_i)$.

• The definite value assigned to $f(A)$ is determined by the definite value assigned to A. $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right\}$, $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right\}$

Non-contextuality of quantum states

For two non-degenerate self-adjoint operators A, B, if

$$
A|\psi\rangle = a|\psi\rangle \text{ and } B|\psi\rangle = b|\psi\rangle
$$

then for every quantum state $|\phi\rangle$

$$
\mathbb{P}_{\ket{\phi}}(A=a)=\mathbb{P}_{\ket{\phi}}(B=b)=\left|\langle\phi|\psi\rangle\right|^2.
$$

4 m + 4 m

 $2Q$

Non-contextuality of quantum states

For two non-degenerate self-adjoint operators A, B, if

$$
A|\psi\rangle = a|\psi\rangle
$$
 and $B|\psi\rangle = b|\psi\rangle$

then for every quantum state $|\phi\rangle$

$$
\mathbb{P}_{|\phi\rangle}(A = a) = \mathbb{P}_{|\phi\rangle}(B = b) = |\langle \phi | \psi \rangle|^2.
$$

Non-contextuality of definite values

For two non-degenerate self-adjoint operators A, B, if

$$
A|\psi\rangle = a|\psi\rangle
$$
 and $B|\psi\rangle = b|\psi\rangle$

then A has the value a iff B has the value b .

Assigning definite values

An ontic state assigns definite values to observables by selecting for every orthonormal basis β the "true" vector.

A + + = +

つくい

Assigning definite values

An ontic state assigns definite values to observables by selecting for every orthonormal basis B the "true" vector.

Non-Contextuality

For every ontic state: $|e\rangle$ is the "true" vector in an orthonormal basis $\mathcal B$ iff it is the true vector in every other orthonormal basis $\mathcal B'$ that contains $|e\rangle$.

∽≏ດ

Assigning definite values

An ontic state assigns definite values to observables by selecting for every orthonormal basis β the "true" vector.

Non-Contextuality

For every ontic state: $|e\rangle$ is the "true" vector in an orthonormal basis $\mathcal B$ iff it is the true vector in every other orthonormal basis $\mathcal B'$ that contains $|e\rangle$.

Kochen-Specker Theorem

There is a finite set of orthonormal bases for which one cannot select true vectors in a non-contextual way.

 \mathcal{A} $\mathcal{F}^{\mathcal{A}}$ \mathcal{B} \mathcal{A} $\mathcal{B}^{\mathcal{A}}$ $\mathcal{B}^{\mathcal{A}}$

Uncolorable graph in 3 dimensions (Peres-cube)

 \equiv

Ronnie Hermens How ψ -ontic are ψ [-ontic ontic models?](#page-0-0)

 \leftarrow

A.

∢ 重→

×

重

Bell: Value assigned to an observable depends on the context C

 $2Q$

Bell: Value assigned to an observable depends on the context $\mathcal C$

MKC: Not every orthonormal basis represents an observable

つへへ

Bell: Value assigned to an observable depends on the context $\mathcal C$

MKC: Not every orthonormal basis represents an observable

but every orthonormal basis can be approximated by an observable

$$
0<\|e_2-e_2'\|<\epsilon.
$$

つへへ

Definition

Two orthonormal bases

$$
\mathcal{B}_1 = \{ |e_1^1\rangle, \ldots, |e_n^1\rangle \}, \ \mathcal{B}_2 = \{ |e_1^2\rangle, \ldots, |e_n^2\rangle \}
$$

are totally incompatible if $\forall i, j = 1, \ldots, n$: $0<|\left\langle e_i^1\right|e_j^2\rangle|<1.$

A + + =

つくい

Definition

Two orthonormal bases

$$
\mathcal{B}_1 = \{ |e_1^1\rangle, \ldots, |e_n^1\rangle \}, \ \mathcal{B}_2 = \{ |e_1^2\rangle, \ldots, |e_n^2\rangle \}
$$

are totally incompatible if $\forall i, j = 1, \ldots, n$: $0<|\left\langle e_i^1\right|e_j^2\rangle|<1.$

Trivial Theorem

Let $\mathfrak B$ be any set of pairwise totally incompatible orthonormal bases. The set of all self-adjoint operators with eigenvectors in one of the bases in \mathfrak{B} is colorable.

Definition

Two orthonormal bases

$$
\mathcal{B}_1 = \{ |e_1^1\rangle, \ldots, |e_n^1\rangle \}, \ \mathcal{B}_2 = \{ |e_1^2\rangle, \ldots, |e_n^2\rangle \}
$$

are totally incompatible if $\forall i, j = 1, \ldots, n$: $0<|\left\langle e_i^1\right|e_j^2\rangle|<1.$

Trivial Theorem

Let $\mathfrak B$ be any set of pairwise totally incompatible orthonormal bases. The set of all self-adjoint operators with eigenvectors in one of the bases in \mathfrak{B} is colorable.

Non-Trivial Theorem (Clifton & Kent)

There exists a countable set $\mathfrak B$ of pairwise totally incompatible orthonormal bases that lies dense in the set of all orthonormal bases.

• Ontic states: $\Lambda = {\lambda : \mathfrak{B} \to \{1, \ldots, n\}}.$

a mills.

メタトメ ミトメ ミト

 $2Q$

扂

- Ontic states: $\Lambda = {\lambda : \mathfrak{B} \to \{1, \ldots, n\}}.$
- $\sum = \sigma$ -algebra generated by cylinder sets.
- \bullet P determined by Born rule + independence of observables.

- Ontic states: $\Lambda = {\lambda : \mathfrak{B} \to \{1, \ldots, n\}}.$
- $\sum = \sigma$ -algebra generated by cylinder sets.
- \bullet P determined by Born rule + independence of observables.
- $|e_i^k\rangle \in \mathcal{B}_k$:

$$
C_{e_i^k} := \{ \lambda \in \Lambda \mid \lambda(k) = i \},
$$

$$
\mu_{\psi}(C_{e_i^k}) := |\langle \psi | e_i^k \rangle|^2.
$$

4 A 6 4 F 6

つくい

- Ontic states: $\Lambda = {\lambda : \mathfrak{B} \to \{1, \ldots, n\}}.$
- $\sum = \sigma$ -algebra generated by cylinder sets.
- \bullet P determined by Born rule + independence of observables.
- $|e_i^k\rangle \in \mathcal{B}_k$:

$$
C_{e_i^k} := \{ \lambda \in \Lambda \mid \lambda(k) = i \},
$$

$$
\mu_{\psi}(C_{e_i^k}) := |\langle \psi | e_i^k \rangle|^2.
$$

$$
\bullet \ |e_{i_1}^{k_1} \rangle \in \mathcal{B}_{k_1}, |e_{i_2}^{k_2} \rangle \in \mathcal{B}_{k_2}, \ ... \ , |e_{i_n}^{k_n} \rangle \in \mathcal{B}_{k_n}:
$$

$$
C_{e_{i_1}^{k_1},...,e_{i_n}^{k_n}} := \bigcap_{j=1}^n \{ \lambda \in \Lambda \mid \lambda(k_j) = i_j \},
$$

$$
\mu_{\psi}(C_{e_{i_1}^{k_1},...,e_{i_n}^{k_n}}) := \prod_{j=1}^n |\langle \psi | e_j^k \rangle|^2.
$$

Ronnie Hermens How ψ -ontic are ψ [-ontic ontic models?](#page-0-0)

K ロ ▶ K 御 ▶ K 君 ▶

一 4 (重) 8

È

PBR Theorem

Any ontic model that reproduces the predictions of QM and satisfies the Preparation Independence Postulate is ψ -ontic.

A + + = +

ALCOHOL:

 $2Q$

PBR Theorem

Any ontic model that reproduces the predictions of QM and satisfies the Preparation Independence Postulate is ψ -ontic.

The MKC models have never been properly defined for composite systems. But reasonable attempts violate PIP.

PBR Theorem

Any ontic model that reproduces the predictions of QM and satisfies the Preparation Independence Postulate is ψ -ontic.

The MKC models have never been properly defined for composite systems. But reasonable attempts violate PIP.

 \mathcal{A} $\mathcal{F}^{\mathcal{A}}$ \mathcal{B} \mathcal{A} $\mathcal{B}^{\mathcal{A}}$ $\mathcal{B}^{\mathcal{A}}$

へのへ

BCLM Theorem

Any ontic model that reproduces the predictions of QM is not maximally ψ -epistemic (but "almost" ψ -ontic).

ψ -onticness:

For all pairs of quantum states ψ , ϕ , for all corresponding probability measures $\mu \in \Delta_{\psi}$, $\nu \in \Delta_{\phi}$ in the ontic model, the variational distance $D(\mu, \nu) := \sup_{\Omega \in \Sigma} |\mu(\Omega) - \nu(\Omega)|$ equals 1.

What is $D(\mu_{\psi}, \mu_{\phi})$ in the MKC models?

ψ -onticness:

For all pairs of quantum states ψ , ϕ , for all corresponding probability measures $\mu \in \Delta_{\psi}$, $\nu \in \Delta_{\phi}$ in the ontic model, the variational distance $D(\mu, \nu) := \sup_{\Omega \in \Sigma} |\mu(\Omega) - \nu(\Omega)|$ equals 1.

What is $D(\mu_{\psi}, \mu_{\phi})$ in the MKC models?

For cylinder sets:

$$
\mu_{\psi}(C_{e_{i_1}^{k_1},...,e_{i_n}^{k_n}}) := \prod_{j=1}^n |\langle \psi | e_{i_j}^{k_j} \rangle|^2 \to 1,
$$

$$
\mu_{\phi}(C_{e_{i_1}^{k_1},...,e_{i_n}^{k_n}}) := \prod_{j=1}^n |\langle \phi | e_{i_j}^{k_j} \rangle|^2 \to 0,
$$

ψ -onticness:

For all pairs of quantum states ψ , ϕ , for all corresponding probability measures $\mu \in \Delta_{\psi}$, $\nu \in \Delta_{\phi}$ in the ontic model, the variational distance $D(\mu, \nu) := \sup_{\Omega \in \Sigma} |\mu(\Omega) - \nu(\Omega)|$ equals 1.

What is $D(\mu_{\psi}, \mu_{\phi})$ in the MKC models?

For cylinder sets:

$$
\mu_{\psi}(C_{e_{i_1}^{k_1},...,e_{i_n}^{k_n}}) := \prod_{j=1}^n |\langle \psi | e_{i_j}^{k_j} \rangle|^2 \to 1, \text{ as } n \to \infty,
$$

$$
\mu_{\phi}(C_{e_{i_1}^{k_1},...,e_{i_n}^{k_n}}) := \prod_{j=1}^n |\langle \phi | e_{i_j}^{k_j} \rangle|^2 \to 0, \text{ as } n \to \infty.
$$

Wanted:
$$
\mu_{\psi}(C_{e_{i_1}^{k_1},...,e_{i_n}^{k_n}}) := \prod_{j=1}^n |\langle \psi | e_{i_j}^{k_j} \rangle|^2 \to 1
$$
,

 \leftarrow \Box

× ×. ⊕ ⊳ 41 重 × ∢ 重う

重

Wanted:
$$
\mu_{\psi}(C_{e_{i_1}^{k_1},...,e_{i_n}^{k_n}}) := \prod_{j=1}^n |\langle \psi | e_{i_j}^{k_j} \rangle|^2 \to 1
$$
,

 299

Ξ

∍

 \leftarrow \Box

B A \sim 41

Wanted:
$$
\mu_{\psi}(C_{e_{i_1}^{k_1},...,e_{i_n}^{k_n}}) := \prod_{j=1}^n |\langle \psi | e_{i_j}^{k_j} \rangle|^2 \to 1
$$
, as $n \to \infty$,

 $2Q$

 \bullet Given $\epsilon > 0$, choose q_{ϵ} such that $E(x) > 1 - \epsilon$.

 \leftarrow \Box

 \sim

Wanted:
$$
\mu_{\psi}(C_{e_{i_1}^{k_1},...,e_{i_n}^{k_n}}) := \prod_{j=1}^n |\langle \psi | e_{i_j}^{k_j} \rangle|^2 \to 1
$$
, as $n \to \infty$,

つへへ

 \bullet Given $\epsilon > 0$, choose q_{ϵ} such that $E(x) > 1 - \epsilon$.

For every k choose $(\mathcal{B}_{n_k}, |e_{i_k}^{n_k})$ $\ket{\psi|e_{i_k}^{n_k}}$) such that $|\langle \psi|e_{i_k}^{n_k} \rangle$ $|n_k^{n_k}\rangle|^2 > 1-q_\epsilon^k.$

$$
\text{Wanted: } \mu_\psi (C_{e_{i_1}^{k_1},...,e_{i_n}^{k_n}}) := \prod_{j=1}^n |\langle \psi | e_{i_j}^{k_j} \rangle|^2 \to 1, \text{ as } n \to \infty,
$$

つくい

• Given $\epsilon > 0$, choose q_{ϵ} such that $E(x) > 1 - \epsilon$.

- For every k choose $(\mathcal{B}_{n_k}, |e_{i_k}^{n_k})$ $\ket{\psi|e_{i_k}^{n_k}}$) such that $|\langle \psi|e_{i_k}^{n_k} \rangle$ $|n_k^{n_k}\rangle|^2 > 1-q_\epsilon^k.$
- Set $\Lambda_{\psi}^{\epsilon} := \bigcap_{k=1}^{\infty} \mathcal{C}_{e_{i_k}^{n_k}},$ then $\mu_\psi(\Lambda^\epsilon_\psi)>1-\epsilon$ and $\mu_\phi(\Lambda^\epsilon_\psi)=0$ for all $|\phi\rangle.$

$$
\text{Wanted: } \mu_\psi (C_{e_{i_1}^{k_1},...,e_{i_n}^{k_n}}) := \prod_{j=1}^n |\langle \psi | e_{i_j}^{k_j} \rangle|^2 \to 1, \text{ as } n \to \infty,
$$

つくい

• Given $\epsilon > 0$, choose q_{ϵ} such that $E(x) > 1 - \epsilon$.

- For every k choose $(\mathcal{B}_{n_k}, |e_{i_k}^{n_k})$ $\ket{\psi|e_{i_k}^{n_k}}$) such that $|\langle \psi|e_{i_k}^{n_k} \rangle$ $|n_k^{n_k}\rangle|^2 > 1-q_\epsilon^k.$
- Set $\Lambda_{\psi}^{\epsilon} := \bigcap_{k=1}^{\infty} \mathcal{C}_{e_{i_k}^{n_k}},$ then $\mu_\psi(\Lambda^\epsilon_\psi)>1-\epsilon$ and $\mu_\phi(\Lambda^\epsilon_\psi)=0$ for all $|\phi\rangle.$ $\Rightarrow D(\mu_{\psi}, \mu_{\phi}) = 1$

How ψ -ontic are the ψ -ontic MKC models?

- **1** There exists a function $f : \Lambda \to \mathcal{P}$, compatible with QM: $\mu_{\ket{\psi}}(f^{-1}(\ket{\psi}))=1.$
- **2** If $|\psi\rangle \neq |\phi\rangle$, then μ_{ψ} and μ_{ϕ} are non-overlapping.

つくい

- **1** There exists a function $f : \Lambda \to \mathcal{P}$, compatible with QM: $\mu_{\ket{\psi}}(f^{-1}(\ket{\psi}))=1.$
- **2** If $|\psi\rangle \neq |\phi\rangle$, then μ_{ψ} and μ_{ϕ} are non-overlapping.
	- The MKC-models are ψ -ontic in the second sense: $D(\mu_{\psi}, \mu_{\phi}) = 1.$

つくい

- **1** There exists a function $f : \Lambda \to \mathcal{P}$. compatible with QM: $\mu_{\ket{\psi}}(f^{-1}(\ket{\psi}))=1.$
- **2** If $|\psi\rangle \neq |\phi\rangle$, then μ_{ψ} and μ_{ϕ} are non-overlapping.
	- The MKC-models are ψ -ontic in the second sense: $D(\mu_{\psi}, \mu_{\phi}) = 1.$
	- But we want the ontic state to tell us what $|\psi\rangle$ is, i.e., $\Lambda_{\psi} \subset \Lambda$ such that

$$
\mu_\psi(\Lambda_\psi)=1, \; \mu_\phi(\Lambda_\psi)=0
$$

へのへ

 $\Lambda^{\epsilon}_{\psi}$ does not contain all the ψ -ontic states: $\mu_{\psi}(\Lambda^{\epsilon}_{\psi}) < 1$.

 \leftarrow \Box

A + + = +

4 三 日

 $2Q$

- $\Lambda^{\epsilon}_{\psi}$ does not contain all the ψ -ontic states: $\mu_{\psi}(\Lambda^{\epsilon}_{\psi}) < 1$.
- Moreover, there is no set Λ_{ψ} such that

$$
\mu_{\psi}(\Lambda_{\psi})=1, \ \mu_{\phi}(\Lambda_{\psi})=0.
$$

A + + = +

 $2Q$

- $\Lambda^{\epsilon}_{\psi}$ does not contain all the ψ -ontic states: $\mu_{\psi}(\Lambda^{\epsilon}_{\psi}) < 1$.
- Moreover, there is no set Λ_{ψ} such that

$$
\mu_{\psi}(\Lambda_{\psi})=1, \ \mu_{\phi}(\Lambda_{\psi})=0.
$$

Not all states in $\Lambda_{\psi}^{\epsilon}$ are ψ -ontic states:

 $\Lambda_{\psi}^{\epsilon} \cap \Lambda_{\phi}^{\epsilon} \neq \varnothing.$

つくい

- $\Lambda^{\epsilon}_{\psi}$ does not contain all the ψ -ontic states: $\mu_{\psi}(\Lambda^{\epsilon}_{\psi}) < 1$.
- Moreover, there is no set Λ_{ψ} such that

$$
\mu_{\psi}(\Lambda_{\psi})=1, \ \mu_{\phi}(\Lambda_{\psi})=0.
$$

Not all states in $\Lambda_{\psi}^{\epsilon}$ are ψ -ontic states:

 $\Lambda_{\psi}^{\epsilon} \cap \Lambda_{\phi}^{\epsilon} \neq \varnothing.$

The set $\Lambda_{\psi}^{\epsilon}$ is underdetermined by $(\psi,\epsilon).$

つくい

- $\Lambda^{\epsilon}_{\psi}$ does not contain all the ψ -ontic states: $\mu_{\psi}(\Lambda^{\epsilon}_{\psi}) < 1$.
- Moreover, there is no set Λ_{ψ} such that

$$
\mu_{\psi}(\Lambda_{\psi})=1, \ \mu_{\phi}(\Lambda_{\psi})=0.
$$

Not all states in $\Lambda_{\psi}^{\epsilon}$ are ψ -ontic states:

 $\Lambda_{\psi}^{\epsilon} \cap \Lambda_{\phi}^{\epsilon} \neq \varnothing.$

- The set $\Lambda_{\psi}^{\epsilon}$ is underdetermined by $(\psi,\epsilon).$
- More generally: $f : \Lambda \to \mathcal{P}$ need not be unique, so we cannot speak of an identity relation.

 Ω