

Ronnie Hermens 2 March 2017

faculty of philosophy

Ronnie Hermens How ψ -ontic are ψ -ontic ontic models?

What does it mean for an ontic model to be ψ -ontic?

・ロン ・回と ・ヨン ・ヨン

æ

What does it mean for an ontic model to be ψ -ontic?

1 The quantum state is real.

- 4 回 2 - 4 回 2 - 4 回 2 - 4

æ

What does it mean for an ontic model to be ψ -ontic?

- **1** The quantum state is real.
- Provide a pairs of quantum states |ψ⟩, |φ⟩, for all corresponding probability measures μ ∈ Δ_ψ, ν ∈ Δ_φ in the ontic model, the variational distance

$$D(\mu,
u):=\sup_{\Omega\in\Sigma}|\mu(\Omega)-
u(\Omega)|$$

equals 1.

What does it mean for an ontic model to be ψ -ontic?

- **1** The quantum state is real.
- Provide a pairs of quantum states |ψ⟩, |φ⟩, for all corresponding probability measures μ ∈ Δ_ψ, ν ∈ Δ_φ in the ontic model, the variational distance

$$D(\mu,
u):=\sup_{\Omega\in\Sigma}|\mu(\Omega)-
u(\Omega)|$$

equals 1.

A student bursts into the study of his professor and calls out: "Dear professor, dear professor! I have discovered a perpetual motion of the second kind!" The professor scarcely takes his eyes of his book and curtly replies: "Come back when you have found a neighborhood U of a state x_0 of such a kind that every $x \in U$ is connected with x_0 by an adiabat." – Walter

- Ontic models framework.
- **2** When is an ontic model ψ -ontic?
- **③** The Kochen-Specker Theorem.
- **9** The ontic models of Meyer, Clifton and Kent (MKC).
- **(3)** The MKC models are ψ -ontic.
- **•** The MKC models are not very ψ -ontic.

< (17) × <

回 と くほ と くほ とう

Э

Assuming the success of efforts to accomplish a complete physical description, the statistical quantum theory would, within the framework of future physics, take an approximately analogous position to the statistical mechanics within the framework of classical mechanics. – Einstein

• 3 > 1

Assuming the success of efforts to accomplish a complete physical description, the statistical quantum theory would, within the framework of future physics, take an approximately analogous position to the statistical mechanics within the framework of classical mechanics. – Einstein

• Do all phenomena described by SM also have a purely classical mechanical description?

Image: A image: A

Assuming the success of efforts to accomplish a complete physical description, the statistical quantum theory would, within the framework of future physics, take an approximately analogous position to the statistical mechanics within the framework of classical mechanics. – Einstein

- Do all phenomena described by SM also have a purely classical mechanical description?
- Theorems that constraint ontic models characterize the possible reducing theories for quantum mechanics.

Operational model $(\mathcal{P},\mathcal{M})$
$P\in \mathcal{P}$ is a preparation, $M\in \mathcal{M}$ is a measurement,
$\mathbb{P}(m M, P)$ probability of outcome <i>m</i> for measurement <i>M</i> performed on a system prepared according to <i>P</i> .

æ

Operational model $(\mathcal{P}, \mathcal{M})$

 $P \in \mathcal{P}$ is a preparation, $M \in \mathcal{M}$ is a measurement,

 $\mathbb{P}(m|M, P)$ probability of outcome *m* for measurement *M* performed on a system prepared according to *P*.

Quantum mechanics as an operational model:

- \mathcal{P} Set of quantum states,
- $\mathcal M$ Set of self-adjoint operators,

$$\mathbb{P}(\boldsymbol{a}|\boldsymbol{A},|\psi\rangle) = \left\langle \psi \middle| \boldsymbol{P}_{\boldsymbol{a}}^{\boldsymbol{A}} \middle| \psi \right\rangle.$$

Ontic model (Λ, Π, Ξ)

 $\begin{array}{ll} \lambda \in \Lambda & \text{is an ontic state,} & \xi \in \Xi & \text{is a Markov kernel} \\ \mu \in \Pi & \text{is a probability measure,} & \text{from } \Lambda \text{ to } \Omega_{\xi}. \end{array}$

 $\forall (P, M)$ there exists (μ_P, ξ_M) such that

$$\mathbb{P}(m|M,P) = \int_{\Lambda} \xi_M(m|\lambda) d\mu_P(\lambda).$$

・ 同 ト ・ ヨ ト ・ ヨ ト

Ontic model (Λ, Π, Ξ)

 $\begin{array}{ll} \lambda \in \Lambda & \text{is an ontic state,} & \xi \in \Xi & \text{is a Markov kernel} \\ \mu \in \Pi & \text{is a probability measure,} & \text{from } \Lambda \text{ to } \Omega_{\xi}. \end{array}$

 $\forall (P, M)$ there exists (μ_P, ξ_M) such that

$$\mathbb{P}(m|M,P) = \int_{\Lambda} \xi_M(m|\lambda) d\mu_P(\lambda).$$

Theorem: An ontic model always exists

"Proof":

$$\Lambda = \mathcal{P}, \ \mu_P(\{P'\}) = \delta_{PP'}, \ \xi_M(m|P) = \mathbb{P}(m|M,P).$$

(人間) (人) (人) (人)

The ontic state tells us what the quantum state is

• 3 > 1

The ontic state tells us what the quantum state is

 There exists a function f : Λ → P
 f(λ) is the true quantum state of the system, (bridge law as identity relation),

The ontic state tells us what the quantum state is

- There exists a function f : Λ → P
 f(λ) is the true quantum state of the system, (bridge law as identity relation),
- Compatibility with quantum mechanical notion of quantum states:

$$\mu_{\psi}(f^{-1}(|\psi\rangle)) = 1.$$

1 $\exists f : \Lambda \to \mathcal{P}$ such that $\forall |\psi\rangle \ \mu_{\psi}(f^{-1}(|\psi\rangle)) = 1.$

ヘロン 人間 とくほど くほとう

æ

1 $\exists f : \Lambda \to \mathcal{P}$ such that $\forall |\psi\rangle \ \mu_{\psi}(f^{-1}(|\psi\rangle)) = 1.$

Pusey, Barrett, Rudolph:

An important step towards the derivation of our result is the idea that the quantum state is physical if distinct quantum states correspond to non-overlapping distributions for λ .

向下 イヨト イヨト

1 $\exists f : \Lambda \to \mathcal{P}$ such that $\forall |\psi\rangle \ \mu_{\psi}(f^{-1}(|\psi\rangle)) = 1.$

Pusey, Barrett, Rudolph:

An important step towards the derivation of our result is the idea that the quantum state is physical if distinct quantum states correspond to non-overlapping distributions for λ .

2 If $|\psi\rangle \neq |\phi\rangle$, then μ_{ψ} and μ_{ϕ} are non-overlapping.

Definition

An ontic model is ψ -ontic if for all $\ket{\psi}, \ket{\phi} \in \mathcal{P}$

$$D(\mu_{\psi},\mu_{\phi}) = \sup_{\Omega\in\Sigma} |\mu_{\psi}(\Omega) - \mu_{\phi}(\Omega)| = 1.$$

- 4 回 ト 4 ヨ ト 4 ヨ ト

Definition

An ontic model is ψ -ontic if for all $|\psi\rangle$, $|\phi\rangle \in \mathcal{P}$

$$D(\mu_{\psi},\mu_{\phi}) = \sup_{\Omega\in\Sigma} |\mu_{\psi}(\Omega) - \mu_{\phi}(\Omega)| = 1.$$

イロン 不同と 不同と 不同と

æ

Definition

An ontic model is ψ -ontic if for all $|\psi\rangle$, $|\phi\rangle \in \mathcal{P}$

$$D(\mu_{\psi},\mu_{\phi}) = \sup_{\Omega\in\Sigma} |\mu_{\psi}(\Omega) - \mu_{\phi}(\Omega)| = 1.$$

• If ${\mathcal P}$ also contains mixed states $\psi\text{-ontic}$ theorems no longer apply.

(本間) (本語) (本語)

Definition

An ontic model is *P*-ontic if for all $P, P' \in \mathcal{P}$

$$D(\mu_P, \mu_{P'}) = \sup_{\Omega \in \Sigma} |\mu_P(\Omega) - \mu_{P'}(\Omega)| = 1.$$

 $\bullet~$ If ${\cal P}$ also contains mixed states $\psi\text{-ontic}$ theorems no longer apply.

(本間) (本語) (本語)

Definition

An ontic model is P-ontic if for all $P, P' \in \mathcal{P}$

$$D(\mu_P, \mu_{P'}) = \sup_{\Omega \in \Sigma} |\mu_P(\Omega) - \mu_{P'}(\Omega)| = 1.$$

- If $\mathcal P$ also contains mixed states ψ -ontic theorems no longer apply.
- In statistical mechanics:
 - If \mathcal{P} is the set of micro-canonical ensembles, then classical mechanics is P-ontic.
 - If \mathcal{P} also contains canonical ensembles, then classical mechanics is *P*-epistemic.

Definition

An ontic model is P-ontic if for all $P, P' \in \mathcal{P}$

$$D(\mu_P, \mu_{P'}) = \sup_{\Omega \in \Sigma} |\mu_P(\Omega) - \mu_{P'}(\Omega)| = 1.$$

- If ${\mathcal P}$ also contains mixed states $\psi\text{-ontic}$ theorems no longer apply.
- In statistical mechanics:
 - If \mathcal{P} is the set of micro-canonical ensembles, then classical mechanics is P-ontic.
 - If \mathcal{P} also contains canonical ensembles, then classical mechanics is *P*-epistemic.

Is just the energy ontic, or also the associated micro-canonical ensemble?

- $\exists f: \Lambda \to \mathcal{P} \text{ such that } \forall |\psi\rangle \ \mu_{\psi}(f^{-1}(|\psi\rangle)) = 1.$
- 2 If $|\psi\rangle \neq |\phi\rangle$, then μ_{ψ} and μ_{ϕ} are non-overlapping.

Definition

An ontic model is ψ -ontic if for all $\ket{\psi}, \ket{\phi} \in \mathcal{P}$

$$D(\mu_{\psi}, \mu_{\phi}) = \sup_{\Omega \in \Sigma} |\mu_{\psi}(\Omega) - \mu_{\phi}(\Omega)| = 1.$$

・ 同 ト ・ ヨ ト ・ ヨ ト

- $\exists f: \Lambda \to \mathcal{P} \text{ such that } \forall |\psi\rangle \ \mu_{\psi}(f^{-1}(|\psi\rangle)) = 1.$
- 2 If $|\psi\rangle \neq |\phi\rangle$, then μ_{ψ} and μ_{ϕ} are non-overlapping.

Definition

An ontic model is ψ -ontic if for all $\ket{\psi}, \ket{\phi} \in \mathcal{P}$

$$D(\mu_{\psi}, \mu_{\phi}) = \sup_{\Omega \in \Sigma} |\mu_{\psi}(\Omega) - \mu_{\phi}(\Omega)| = 1.$$

• Clearly 1 \Rightarrow 2, but does 2 \Rightarrow 1?

- 4 同 6 4 日 6 4 日 6

- $\exists f: \Lambda \to \mathcal{P} \text{ such that } \forall |\psi\rangle \ \mu_{\psi}(f^{-1}(|\psi\rangle)) = 1.$
- 2 If $|\psi\rangle \neq |\phi\rangle$, then μ_{ψ} and μ_{ϕ} are non-overlapping.

Definition

An ontic model is ψ -ontic if for all $\ket{\psi}, \ket{\phi} \in \mathcal{P}$

$$D(\mu_{\psi},\mu_{\phi}) = \sup_{\Omega\in\Sigma} |\mu_{\psi}(\Omega) - \mu_{\phi}(\Omega)| = 1.$$

- Clearly 1 \Rightarrow 2, but does 2 \Rightarrow 1?
- Intuitively: take $\Omega = \Lambda_{\psi} := f^{-1}(|\psi\rangle)$.
- But f need not exist for ψ -ontic models.

(4月) (4日) (4日)

- $\exists f: \Lambda \to \mathcal{P} \text{ such that } \forall |\psi\rangle \ \mu_{\psi}(f^{-1}(|\psi\rangle)) = 1.$
- 2 If $|\psi\rangle \neq |\phi\rangle$, then μ_{ψ} and μ_{ϕ} are non-overlapping.

Definition

An ontic model is ψ -ontic if for all $\ket{\psi}, \ket{\phi} \in \mathcal{P}$

$$D(\mu_{\psi},\mu_{\phi}) = \sup_{\Omega\in\Sigma} |\mu_{\psi}(\Omega) - \mu_{\phi}(\Omega)| = 1.$$

- Clearly 1 \Rightarrow 2, but does 2 \Rightarrow 1?
- Intuitively: take $\Omega = \Lambda_{\psi} := f^{-1}(|\psi\rangle)$.
- But f need not exist for ψ -ontic models.

Case study: The MKC hidden variable models.

(4月) (1日) (日)

• Hidden variable models are traditionally concerned with the question:

Do measurements simply reveal the value of an observable, or is this value in some sense 'created' by the act of measurement?

伺下 イヨト イヨト

• Hidden variable models are traditionally concerned with the question:

Do measurements simply reveal the value of an observable, or is this value in some sense 'created' by the act of measurement?

• Ontic models do not provide an answer.

 $\xi(m|M,\lambda)$ provides a probability and λ does little to explain the transition from potential to actual.

マロト マヨト マヨト

• Hidden variable models are traditionally concerned with the question:

Do measurements simply reveal the value of an observable, or is this value in some sense 'created' by the act of measurement?

• Ontic models do not provide an answer.

 $\xi(m|M,\lambda)$ provides a probability and λ does little to explain the transition from potential to actual.

• Determinate ontic states do give an answer:

 $\xi(m|M,\lambda) \in \{0,1\}.$

(4月) (1日) (日)

• Hidden variable models are traditionally concerned with the question:

Do measurements simply reveal the value of an observable, or is this value in some sense 'created' by the act of measurement?

• Ontic models do not provide an answer.

 $\xi(m|M,\lambda)$ provides a probability and λ does little to explain the transition from potential to actual.

• Determinate ontic states do give an answer:

 $\xi(m|M,\lambda) \in \{0,1\}.$

The MKC models are constructed precisely to show the logical possibility of a **non-contextual hidden variable theory**. Allegedly, this possibility was ruled out by the Kochen-Specker theorem.

Assigning values to observables

For every non-degenerate self-adjoint operator A, there is a unique orthonormal basis

$$\mathcal{B}_A = \{ |e_1\rangle, \ldots, |e_n\rangle \}$$

such that

$$A = a_1 |e_1\rangle + \ldots + a_n |e_n\rangle$$

Assigning values to observables

For every non-degenerate self-adjoint operator A, there is a unique orthonormal basis

$$\mathcal{B}_{A} = \{ \ket{e_{1}}, \ldots, \ket{e_{n}} \}$$

such that

$$A = a_1 |e_1\rangle + \ldots + a_n |e_n\rangle$$

Assigning a definite value a_j to A corresponds to selecting the vector |e_j⟩ in the basis B_A.

For every non-degenerate self-adjoint operator A, there is a unique orthonormal basis

$$\mathcal{B}_A = \{ |e_1\rangle, \ldots, |e_n\rangle \}$$

such that

$$A = a_1 |e_1\rangle + \ldots + a_n |e_n\rangle$$

 Assigning a definite value a_j to A corresponds to selecting the vector |e_j⟩ in the basis B_A.

For every non-degenerate self-adjoint operator A and every function f, the observables f(A) and A can be measured jointly and the outcome for f(A) is $f(a_j)$.

(4月) (4日) (4日)

For every non-degenerate self-adjoint operator A, there is a unique orthonormal basis

$$\mathcal{B}_A = \{ |e_1\rangle, \ldots, |e_n\rangle \}$$

such that

$$A = a_1 |e_1\rangle + \ldots + a_n |e_n\rangle$$

Assigning a definite value a_j to A corresponds to selecting the vector |e_j⟩ in the basis B_A.

For every non-degenerate self-adjoint operator A and every function f, the observables f(A) and A can be measured jointly and the outcome for f(A) is $f(a_j)$.

• The definite value assigned to *f*(*A*) is determined by the definite value assigned to *A*.

Non-contextuality of quantum states

For two non-degenerate self-adjoint operators A, B, if

$$A \ket{\psi} = a \ket{\psi}$$
 and $B \ket{\psi} = b \ket{\psi}$

then for every quantum state $|\phi
angle$

$$\mathbb{P}_{\ket{\phi}}(\textit{A}=\textit{a}) = \mathbb{P}_{\ket{\phi}}(\textit{B}=\textit{b}) = \ket{ig \phi} \psi ig ^2.$$

- (目) - (日) - (日)

Non-contextuality of quantum states

For two non-degenerate self-adjoint operators A, B, if

$$A\left|\psi
ight
angle=a\left|\psi
ight
angle$$
 and $B\left|\psi
ight
angle=b\left|\psi
ight
angle$

then for every quantum state $|\phi
angle$

$$\mathbb{P}_{\ket{\phi}}(\textit{A}=\textit{a}) = \mathbb{P}_{\ket{\phi}}(\textit{B}=\textit{b}) = \ket{ig \phi} \psi ig ^2.$$

Non-contextuality of definite values

For two non-degenerate self-adjoint operators A, B, if

$$A\left|\psi
ight
angle=a\left|\psi
ight
angle$$
 and $B\left|\psi
ight
angle=b\left|\psi
ight
angle$

then A has the value a iff B has the value b.

Assigning definite values

An ontic state assigns definite values to observables by selecting for every orthonormal basis $\mathcal B$ the "true" vector.

Assigning definite values

An ontic state assigns definite values to observables by selecting for every orthonormal basis \mathcal{B} the "true" vector.

Non-Contextuality

For every ontic state: $|e\rangle$ is the "true" vector in an orthonormal basis \mathcal{B} iff it is the true vector in every other orthonormal basis \mathcal{B}' that contains $|e\rangle$.

Assigning definite values

An ontic state assigns definite values to observables by selecting for every orthonormal basis \mathcal{B} the "true" vector.

Non-Contextuality

For every ontic state: $|e\rangle$ is the "true" vector in an orthonormal basis \mathcal{B} iff it is the true vector in every other orthonormal basis \mathcal{B}' that contains $|e\rangle$.

Kochen-Specker Theorem

There is a finite set of orthonormal bases for which one cannot select true vectors in a non-contextual way.

Uncolorable graph in 3 dimensions (Peres-cube)

Ronnie Hermens How ψ -ontic are ψ -ontic ontic models?

白 ト く ヨ ト く ヨ ト

Bell: Value assigned to an observable depends on the context ${\mathcal C}$

< ∃⇒

Bell: Value assigned to an observable depends on the context ${\mathcal C}$

MKC: Not every orthonormal basis represents an observable

Bell: Value assigned to an observable depends on the context ${\mathcal C}$

MKC: Not every orthonormal basis represents an observable

but every orthonormal basis can be approximated by an observable

$$0<\|e_2-e_2'\|<\epsilon.$$

Definition

Two orthonormal bases

$$\mathcal{B}_{1} = \left\{ \left| e_{1}^{1} \right\rangle, \dots, \left| e_{n}^{1} \right\rangle \right\}, \ \mathcal{B}_{2} = \left\{ \left| e_{1}^{2} \right\rangle, \dots, \left| e_{n}^{2} \right\rangle \right\}$$

are totally incompatible if $orall i, j=1,\ldots,n$: $0<|\left\langle e_i^1 \middle| e_j^2
ight
angle |<1.$

・ 同下 ・ ヨト ・ ヨト

Definition

Two orthonormal bases

$$\mathcal{B}_{1} = \left\{ \left| e_{1}^{1} \right\rangle, \dots, \left| e_{n}^{1} \right\rangle \right\}, \ \mathcal{B}_{2} = \left\{ \left| e_{1}^{2} \right\rangle, \dots, \left| e_{n}^{2} \right\rangle \right\}$$

are totally incompatible if $orall i,j=1,\ldots,n$: $0<|\left\langle e_{i}^{1}\left| e_{j}^{2}
ight
angle |<1.$

Trivial Theorem

Let \mathfrak{B} be any set of pairwise totally incompatible orthonormal bases. The set of all self-adjoint operators with eigenvectors in one of the bases in \mathfrak{B} is colorable.

- (目) - (日) - (日)

Definition

Two orthonormal bases

$$\mathcal{B}_{1} = \left\{ \left| e_{1}^{1} \right\rangle, \dots, \left| e_{n}^{1} \right\rangle \right\}, \ \mathcal{B}_{2} = \left\{ \left| e_{1}^{2} \right\rangle, \dots, \left| e_{n}^{2} \right\rangle \right\}$$

are totally incompatible if $orall i, j=1,\ldots,n$: $0<|\left\langle e_i^1 \middle| e_j^2
ight
angle |<1.$

Trivial Theorem

Let \mathfrak{B} be any set of pairwise totally incompatible orthonormal bases. The set of all self-adjoint operators with eigenvectors in one of the bases in \mathfrak{B} is colorable.

Non-Trivial Theorem (Clifton & Kent)

There exists a countable set \mathfrak{B} of pairwise totally incompatible orthonormal bases that lies dense in the set of all orthonormal bases.

• Ontic states: $\Lambda = \{\lambda : \mathfrak{B} \to \{1, \dots, n\}\}.$

・ロン ・回と ・ヨン ・ヨン

- Ontic states: $\Lambda = \{\lambda : \mathfrak{B} \to \{1, \dots, n\}\}.$
- $\Sigma = \sigma$ -algebra generated by cylinder sets.
- \mathcal{P} determined by Born rule + independence of observables.

マロト マヨト マヨト

- Ontic states: $\Lambda = \{\lambda : \mathfrak{B} \to \{1, \dots, n\}\}.$
- $\Sigma = \sigma$ -algebra generated by cylinder sets.
- \mathcal{P} determined by Born rule + independence of observables.
- $|e_i^k\rangle \in \mathcal{B}_k$:

$$\begin{split} \mathcal{C}_{\boldsymbol{e}_{i}^{k}} &:= \left\{ \lambda \in \Lambda \mid \lambda(k) = i \right\}, \\ \mu_{\psi}(\mathcal{C}_{\boldsymbol{e}_{i}^{k}}) &:= |\langle \psi | \boldsymbol{e}_{i}^{k} \rangle|^{2}. \end{split}$$

- Ontic states: $\Lambda = \{\lambda : \mathfrak{B} \to \{1, \dots, n\}\}.$
- $\Sigma = \sigma$ -algebra generated by cylinder sets.
- \mathcal{P} determined by Born rule + independence of observables.
- $|e_i^k\rangle \in \mathcal{B}_k$:

$$\begin{split} C_{e_i^k} &:= \{\lambda \in \Lambda \mid \lambda(k) = i\},\\ \mu_{\psi}(C_{e_i^k}) &:= |\langle \psi | e_i^k \rangle|^2. \end{split}$$

•
$$|e_{i_1}^{k_1}\rangle \in \mathcal{B}_{k_1}$$
, $|e_{i_2}^{k_2}\rangle \in \mathcal{B}_{k_2}$, ..., $|e_{i_n}^{k_n}\rangle \in \mathcal{B}_{k_n}$:

$$egin{aligned} & \mathcal{C}_{e_{i_{1}}^{k_{1}},...,e_{i_{n}}^{k_{n}}} := igcap_{j=1}^{n} \left\{ \lambda \in \Lambda \mid \lambda(k_{j}) = i_{j}
ight\}, \ & \mu_{\psi}(\mathcal{C}_{e_{i_{1}}^{k_{1}},...,e_{i_{n}}^{k_{n}}}) := \prod_{j=1}^{n} |\langle \psi | e_{j}^{k}
angle|^{2}. \end{aligned}$$

소리가 소문가 소문가 소문가

・ロト ・回ト ・ヨト ・ヨト

æ

PBR Theorem

Any ontic model that reproduces the predictions of QM and satisfies the *Preparation Independence Postulate* is ψ -ontic.

伺下 イヨト イヨト

PBR Theorem

Any ontic model that reproduces the predictions of QM and satisfies the *Preparation Independence Postulate* is ψ -ontic.

The MKC models have never been properly defined for composite systems. But reasonable attempts violate PIP.

PBR Theorem

Any ontic model that reproduces the predictions of QM and satisfies the *Preparation Independence Postulate* is ψ -ontic.

The MKC models have never been properly defined for composite systems. But reasonable attempts violate PIP.

(4月) (4日) (4日)

BCLM Theorem

Any ontic model that reproduces the predictions of QM is not maximally ψ -epistemic (but "almost" ψ -ontic).

ψ -onticness:

For all pairs of quantum states ψ, ϕ , for all corresponding probability measures $\mu \in \Delta_{\psi}, \nu \in \Delta_{\phi}$ in the ontic model, the variational distance $D(\mu, \nu) := \sup_{\Omega \in \Sigma} |\mu(\Omega) - \nu(\Omega)|$ equals 1.

What is $D(\mu_{\psi}, \mu_{\phi})$ in the MKC models?

ψ -onticness:

For all pairs of quantum states ψ, ϕ , for all corresponding probability measures $\mu \in \Delta_{\psi}, \nu \in \Delta_{\phi}$ in the ontic model, the variational distance $D(\mu, \nu) := \sup_{\Omega \in \Sigma} |\mu(\Omega) - \nu(\Omega)|$ equals 1.

What is $D(\mu_{\psi}, \mu_{\phi})$ in the MKC models?

For cylinder sets:

$$\begin{split} &\mu_{\psi}(\textit{\textit{C}}_{e_{i_{1}}^{k_{1}},...,e_{i_{n}}^{k_{n}}}) := \prod_{j=1}^{n} |\langle \psi|e_{i_{j}}^{k_{j}}\rangle|^{2} \to 1, \\ &\mu_{\phi}(\textit{\textit{C}}_{e_{i_{1}}^{k_{1}},...,e_{i_{n}}^{k_{n}}}) := \prod_{j=1}^{n} |\langle \phi|e_{i_{j}}^{k_{j}}\rangle|^{2} \to 0, \end{split}$$

ψ -onticness:

For all pairs of quantum states ψ, ϕ , for all corresponding probability measures $\mu \in \Delta_{\psi}, \nu \in \Delta_{\phi}$ in the ontic model, the variational distance $D(\mu, \nu) := \sup_{\Omega \in \Sigma} |\mu(\Omega) - \nu(\Omega)|$ equals 1.

What is $D(\mu_{\psi}, \mu_{\phi})$ in the MKC models?

For cylinder sets:

$$\begin{split} & \mu_{\psi}(C_{e_{i_{1}}^{k_{1}},\ldots,e_{i_{n}}^{k_{n}}}) := \prod_{j=1}^{n} |\langle \psi | e_{i_{j}}^{k_{j}} \rangle|^{2} \to 1, \text{ as } n \to \infty, \\ & \mu_{\phi}(C_{e_{i_{1}}^{k_{1}},\ldots,e_{i_{n}}^{k_{n}}}) := \prod_{j=1}^{n} |\langle \phi | e_{i_{j}}^{k_{j}} \rangle|^{2} \to 0, \text{ as } n \to \infty. \end{split}$$

Wanted:
$$\mu_{\psi}(C_{e_{i_1}^{k_1},\ldots,e_{i_n}^{k_n}}) := \prod_{j=1}^n |\langle \psi | e_{i_j}^{k_j} \rangle|^2 \to 1,$$

- < ≣ →

æ

Wanted:
$$\mu_{\psi}(C_{e_{i_1}^{k_1},\ldots,e_{i_n}^{k_n}}) := \prod_{j=1}^n |\langle \psi | e_{i_j}^{k_j} \rangle|^2 \to 1,$$

・ 同・ ・ ヨ・

Wanted:
$$\mu_{\psi}(C_{e_{i_1}^{k_1},\ldots,e_{i_n}^{k_n}}) := \prod_{j=1}^n |\langle \psi | e_{i_j}^{k_j} \rangle|^2 \to 1$$
, as $n \to \infty$,

∃ >

• Given $\epsilon > 0$, choose q_{ϵ} such that $E(x) > 1 - \epsilon$.

Wanted:
$$\mu_{\psi}(C_{e_{i_1}^{k_1},\ldots,e_{i_n}^{k_n}}) := \prod_{j=1}^n |\langle \psi | e_{i_j}^{k_j} \rangle|^2 \to 1$$
, as $n \to \infty$,

• Given $\epsilon > 0$, choose q_{ϵ} such that $E(x) > 1 - \epsilon$.

• For every k choose $(\mathcal{B}_{n_k}, |e_{i_k}^{n_k}\rangle)$ such that $|\langle \psi | e_{i_k}^{n_k} \rangle|^2 > 1 - q_{\epsilon}^k$.

Wanted:
$$\mu_{\psi}(\mathcal{C}_{e_{i_1}^{k_1},\ldots,e_{i_n}^{k_n}}) := \prod_{j=1}^n |\langle \psi | e_{i_j}^{k_j} \rangle|^2 \to 1$$
, as $n \to \infty$,

- Given $\epsilon > 0$, choose q_{ϵ} such that $E(x) > 1 \epsilon$.
- For every k choose $(\mathcal{B}_{n_k}, |e_{i_k}^{n_k}\rangle)$ such that $|\langle \psi | e_{i_k}^{n_k} \rangle|^2 > 1 q_{\epsilon}^k$.
- Set $\Lambda_{\psi}^{\epsilon} := \bigcap_{k=1}^{\infty} C_{e_{i_k}^{n_k}}$, then $\mu_{\psi}(\Lambda_{\psi}^{\epsilon}) > 1 - \epsilon$ and $\mu_{\phi}(\Lambda_{\psi}^{\epsilon}) = 0$ for all $|\phi\rangle$.

Wanted:
$$\mu_{\psi}(C_{e_{i_1}^{k_1},\ldots,e_{i_n}^{k_n}}) := \prod_{j=1}^n |\langle \psi | e_{i_j}^{k_j} \rangle|^2 \to 1$$
, as $n \to \infty$,

• Given $\epsilon > 0$, choose q_{ϵ} such that $E(x) > 1 - \epsilon$.

- For every k choose $(\mathcal{B}_{n_k}, |e_{i_k}^{n_k}\rangle)$ such that $|\langle \psi | e_{i_k}^{n_k} \rangle|^2 > 1 q_{\epsilon}^k$.
- Set $\Lambda_{\psi}^{\epsilon} := \bigcap_{k=1}^{\infty} C_{e_{i_{k}}^{n_{k}}}$, then $\mu_{\psi}(\Lambda_{\psi}^{\epsilon}) > 1 - \epsilon$ and $\mu_{\phi}(\Lambda_{\psi}^{\epsilon}) = 0$ for all $|\phi\rangle$. $\Rightarrow D(\mu_{\psi}, \mu_{\phi}) = 1$

- O There exists a function f : A → P, compatible with QM: µ_{|ψ⟩}(f⁻¹(|ψ⟩)) = 1.
- 2 If $|\psi\rangle \neq |\phi\rangle$, then μ_{ψ} and μ_{ϕ} are non-overlapping.

- There exists a function f : A → P, compatible with QM: µ_{|ψ⟩}(f⁻¹(|ψ⟩)) = 1.
- 2 If $|\psi\rangle \neq |\phi\rangle$, then μ_{ψ} and μ_{ϕ} are non-overlapping.
 - The MKC-models are ψ -ontic in the second sense: $D(\mu_{\psi}, \mu_{\phi}) = 1.$

- O There exists a function f : A → P, compatible with QM: µ_{|ψ⟩}(f⁻¹(|ψ⟩)) = 1.
- 2 If $|\psi\rangle \neq |\phi\rangle$, then μ_{ψ} and μ_{ϕ} are non-overlapping.
 - The MKC-models are ψ -ontic in the second sense: $D(\mu_{\psi}, \mu_{\phi}) = 1.$
 - But we want the ontic state to tell us what $|\psi\rangle$ is, i.e., $\Lambda_\psi\subset\Lambda$ such that

$$\mu_{\psi}(\Lambda_{\psi}) = 1, \ \mu_{\phi}(\Lambda_{\psi}) = 0$$

• $\Lambda_{\psi}^{\epsilon}$ does not contain all the ψ -ontic states: $\mu_{\psi}(\Lambda_{\psi}^{\epsilon}) < 1$.

同 と く き と く き と

- Λ^ϵ_ψ does not contain all the ψ-ontic states: μ_ψ(Λ^ϵ_ψ) < 1.
- Moreover, there is no set Λ_{ψ} such that

$$\mu_{\psi}(\Lambda_{\psi}) = 1, \ \mu_{\phi}(\Lambda_{\psi}) = 0.$$

向下 イヨト イヨト

- Λ^ϵ_ψ does not contain all the ψ-ontic states: μ_ψ(Λ^ϵ_ψ) < 1.
- Moreover, there is no set Λ_{ψ} such that

$$\mu_{\psi}(\Lambda_{\psi}) = 1, \ \mu_{\phi}(\Lambda_{\psi}) = 0.$$

• Not all states in $\Lambda_{\psi}^{\epsilon}$ are ψ -ontic states:

$$\Lambda^{\epsilon}_{\psi} \cap \Lambda^{\epsilon}_{\phi} \neq \varnothing.$$

- Λ^ϵ_ψ does not contain all the ψ-ontic states: μ_ψ(Λ^ϵ_ψ) < 1.
- Moreover, there is no set Λ_{ψ} such that

$$\mu_{\psi}(\Lambda_{\psi}) = 1, \ \mu_{\phi}(\Lambda_{\psi}) = 0.$$

• Not all states in $\Lambda_{\psi}^{\epsilon}$ are ψ -ontic states:

 $\Lambda^{\epsilon}_{\psi}\cap\Lambda^{\epsilon}_{\phi}\neq\varnothing.$

• The set $\Lambda_{\psi}^{\epsilon}$ is underdetermined by (ψ, ϵ) .

- $\Lambda_{\psi}^{\epsilon}$ does not contain all the ψ -ontic states: $\mu_{\psi}(\Lambda_{\psi}^{\epsilon}) < 1$.
- Moreover, there is no set Λ_{ψ} such that

$$\mu_{\psi}(\Lambda_{\psi}) = 1, \ \mu_{\phi}(\Lambda_{\psi}) = 0.$$

• Not all states in $\Lambda_{\psi}^{\epsilon}$ are ψ -ontic states:

 $\Lambda^{\epsilon}_{\psi}\cap\Lambda^{\epsilon}_{\phi}\neq \varnothing.$

- The set $\Lambda_{\psi}^{\epsilon}$ is underdetermined by (ψ, ϵ) .
- More generally: f : Λ → P need not be unique, so we cannot speak of an identity relation.