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The PBR Theorem

Formal statement

Any ontic model that reproduces the
predictions of QM and satisfies the
Preparation Independence Postulate is ψ-ontic.

As a slogan

The quantum state is real.
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Methodology

PBR Theorem

Any ontic model that reproduces the predictions of QM and
satisfies the Preparation Independence Postulate is ψ-ontic.

Quantum mechanics is viewed as an operational theory.

Quantum states are viewed as preparation procedures.
Quantum observables are viewed as measurement procedures.
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The operational approach

Operational Prepare Measurement model (P,M)

P ∈ P is a preparation, M ∈M is a measurement,
P(m|M,P) probability of outcome m for measurement M

performed on a system prepared according to P.

S

SP

SM,P
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Methodology

PBR Theorem

Any ontic model that reproduces the predictions of QM and
satisfies the Preparation Independence Postulate is ψ-ontic.

Quantum mechanics is viewed as an operational theory.

Quantum states are viewed as preparation procedures.
Quantum observables are viewed as measurement procedures.

The ontic models framework is a general framework in which
systems are assigned states.

State space Λ.
Preparations are identified with probability distributions over Λ.
Measurements are identified with response functions.
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Ontic models

Preparation of |ψ〉:

Λ

f|ψ〉 ∫
f|ψ〉(λ)dλ = 1

Measurement of M:

Λ0

1 ξM(m1|.)

ξM(m1,m2|.)

ξM(m1,m2,m3|.)∑
i

ξM(mi |λ) = 1

Compatibility: P(m|M,P) =
∫
ξM(m|λ)f|ψ〉(λ)dλ.
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ψ-onticity

The ontic state λ determines the quantum state |ψ〉:
An important step towards the derivation of our result is
the idea that the quantum state is physical if distinct quan-
tum states correspond to non-overlapping distributions for
λ.

Λ

f|ψ〉 f|φ〉
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Preparation Independence

λ =
(λA, λB)

|ψ〉

|φ〉

A
L
I
C
E

λA

|ψ〉

|φ〉

B
O
B

λB
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Preparation Independence

ΛA

f|ψ〉 f|φ〉

ΛB

f|ψ〉

f|φ〉
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Without PIP

PBR Theorem

Any ontic model that reproduces the predictions of QM and
satisfies the Preparation Independence Postulate is ψ-ontic.

BCLM Theorem

Any ontic model that reproduces the predictions of QM is almost
ψ-ontic.
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ψ-ontic Ontic Models

The ontic state tells us what the quantum state is

There exists a function f : Λ→ P
f (λ) is the true quantum state of the system,

Compatibility with quantum mechanical notion of quantum
states:

µψ(f −1(|ψ〉)) = 1.
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ψ-ontic Ontic Models

1 ∃f : Λ→ P such that ∀ |ψ〉 µψ(f −1(|ψ〉)) = 1.

Pusey, Barrett, Rudolph:

An important step towards the derivation of our result is
the idea that the quantum state is physical if distinct quan-
tum states correspond to non-overlapping distributions for
λ.

2 If |ψ〉 6= |φ〉, then µψ and µφ are non-overlapping.

Definition

An ontic model is ψ-ontic if for all |ψ〉 , |φ〉 ∈ P

D(µψ, µφ) = sup
Ω∈Σ
|µψ(Ω)− µφ(Ω)| = 1.
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Are ψ-ontic Ontic Models ψ-ontic?

1 ∃f : Λ→ P such that ∀ |ψ〉 µψ(f −1(|ψ〉)) = 1.

2 If |ψ〉 6= |φ〉, then µψ and µφ are non-overlapping.

Definition

An ontic model is ψ-ontic if for all |ψ〉 , |φ〉 ∈ P

D(µψ, µφ) = sup
Ω∈Σ
|µψ(Ω)− µφ(Ω)| = 1.

Clearly 1⇒2, but does 2⇒1?

Intuitively: take Ω = Λψ := f −1(|ψ〉).

But f need not exist for ψ-ontic models.

Case study: The MKC hidden variable models.
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Ontic Models and Hidden Variables

Hidden variable models are traditionally concerned with the
question:

Do measurements simply reveal the value of an observable, or
is this value in some sense ‘created’ by the act of
measurement?

Ontic models do not provide an answer.

ξ(m|M, λ) provides a probability and λ does little to explain
the transition from potential to actual.

Determinate ontic states do give an answer:

ξ(m|M, λ) ∈ {0, 1}.

The MKC models are constructed precisely to show the logical
possibility of a non-contextual hidden variable theory. Allegedly,
this possibility was ruled out by the Kochen-Specker theorem.
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Assigning values to observables

Every non-degenerate self-adjoint operator A can be written as

A = a1 |e1〉 〈e1|+ . . .+ an |en〉 〈en|

with
BA = {|e1〉 , . . . , |en〉}

an orthonormal basis.

Assigning value aj to A
= select vector |ej〉 from BA.

For every non-degenerate self-adjoint operator A and every
function f , the observables f (A) and A can be measured jointly
and the outcome for f (A) is f (aj).

The definite value assigned to f (A) is determined by the
definite value assigned to A.
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The Kochen-Specker Theorem

Assigning definite values

An ontic state assigns definite values to observables by selecting
for every orthonormal basis B the “true” vector.

Non-Contextuality

For every ontic state: |e〉 is the “true” vector in an orthonormal
basis B iff it is the true vector in every other orthonormal basis B′
that contains |e〉.

Kochen-Specker Theorem

There is a finite set of orthonormal bases for which one cannot
select true vectors in a non-contextual way.
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Circumventing the Kochen-Specker Theorem

Bell: Value assigned to an observable depends on the context C

e1

e3e2

g2
2

g4
2

⇒ g4
2

e2

g2
2

e1

e3e2
C1

C2

MKC: Not every orthonormal basis represents an observable

e1

e3e2

g2
2

g4
2

⇒ g4
2

e2

g2
2

e ′1

e ′3e ′2

but every orthonormal basis can be approximated by an observable

0 < ‖e2 − e ′2‖ < ε.
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The ontic models of Meyer, Kent and Clifton (MKC)

Definition

Two orthonormal bases

B1 =
{∣∣e1

1

〉
, . . . ,

∣∣e1
n

〉}
, B2 =

{∣∣e2
1

〉
, . . . ,

∣∣e2
n

〉}
are totally incompatible if ∀i , j = 1, . . . , n :

0 < |
〈
e1
i

∣∣e2
j

〉
| < 1.

Trivial Theorem

Let B be any set of pairwise totally incompatible orthonormal
bases. The set of all self-adjoint operators with eigenvectors in one
of the bases in B is colorable.

Non-Trivial Theorem (Clifton & Kent)

There exists a countable set B of pairwise totally incompatible
orthonormal bases that lies dense in the set of all orthonormal
bases.
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The ontic models of Meyer, Kent and Clifton (MKC)

Ontic states: Λ = {λ : B→ {1, . . . , n}}.
Σ = σ-algebra generated by cylinder sets.

P determined by Born rule + independence of observables.

|eki 〉 ∈ Bk :

Ceki
:= {λ ∈ Λ | λ(k) = i} ,

µψ(Ceki
) :=|〈ψ|eki 〉|2.

|ek1
i1
〉 ∈ Bk1 , |ek2

i2
〉 ∈ Bk2 , . . ., |eknin 〉 ∈ Bkn :

C
e
k1
i1
,...,eknin

:=
n⋂

j=1

{λ ∈ Λ | λ(kj) = ij} ,

µψ(C
e
k1
i1
,...,eknin

) :=
n∏

j=1

|〈ψ|ekj 〉|2.
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Are the MKC models ψ-ontic?

PBR Theorem

Any ontic model that reproduces the
predictions of QM and satisfies the
Preparation Independence Postulate is ψ-ontic.

The MKC models have never been properly
defined for composite systems. But reasonable
attempts violate PIP.

BCLM Theorem

Any ontic model that reproduces the predictions of QM is not
maximally ψ-epistemic (but “almost” ψ-ontic).
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Are the MKC models ψ-ontic?

ψ-onticness:

For all pairs of quantum states ψ, φ, for all corresponding
probability measures µ ∈ ∆ψ, ν ∈ ∆φ in the ontic model, the
variational distance D(µ, ν) := supΩ∈Σ |µ(Ω)− ν(Ω)| equals 1.

What is D(µψ, µφ) in the MKC models?

For cylinder sets:

µψ(C
e
k1
i1
,...,eknin

) :=
n∏

j=1

|〈ψ|ekjij 〉|
2 → 1, as n→∞,

µφ(C
e
k1
i1
,...,eknin

) :=
n∏

j=1

|〈φ|ekjij 〉|
2 → 0, as n→∞.
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Finding ontic states for |ψ〉
Wanted: µψ(C

e
k1
i1
,...,eknin

) :=
∏n

j=1 |〈ψ|e
kj
ij
〉|2 → 1, as n→∞,

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

E (q) =
∞∏
k=1

(1− qk)

Given ε > 0, choose qε such that E (x) > 1− ε.
For every k choose (Bnk , |e

nk
ik
〉) such that |〈ψ|enkik 〉|

2 > 1− qkε .

Set Λεψ :=
⋂∞

k=1 Ce
nk
ik

,

then µψ(Λεψ) > 1− ε and µφ(Λεψ) = 0 for all |φ〉.
⇒ D(µψ, µφ) = 1
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How ψ-ontic are the ψ-ontic MKC models?

1 There exists a function f : Λ→ P,

compatible with QM: µ|ψ〉(f
−1(|ψ〉)) = 1.

2 If |ψ〉 6= |φ〉, then µψ and µφ are non-overlapping.

The MKC-models are ψ-ontic in the second sense:
D(µψ, µφ) = 1.

But we want the ontic state to tell us what |ψ〉 is, i.e.,

Λψ ⊂ Λ such that

µψ(Λψ) = 1, µφ(Λψ) = 0
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How ψ-ontic are the ψ-ontic MKC models?

Λεψ does not contain all the ψ-ontic states: µψ(Λεψ) < 1.
Moreover, there is no set Λψ such that

µψ(Λψ) = 1, µφ(Λψ) = 0.

Not all states in Λεψ are ψ-ontic states:

Λεψ ∩ Λεφ 6= ∅.

The set Λεψ is underdetermined by (ψ, ε).
More generally: f : Λ→ P need not be unique, so we cannot
speak of an identity relation.
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