$\psi\text{-ontic}$ models without ψ

Ronnie Hermens 11 July 2018

Where were you When the PBR-paper came out?

"The wavefunction is a real physical object after all, say researchers"

• Traditional hidden variables complement $\psi :$

 $(\ket{\psi}, \lambda)$

X? P? I dunno LOI

 \odot

• Why hidden variables? Incompleteness!

$$\Delta X \Delta P \geq \frac{\hbar}{2}$$

• But $|\psi
angle$ is a poor starting point for completeness. (

• Replace $|\psi\rangle$ with λ .

Contextuality, non-locality, etc.

- Recap of the PBR Theorem
- Iighlighting the important/problematic step
- The counterexample
- Conclusion

PBR Theorem

Any ontic model that reproduces the predictions of QM and satisfies the Preparation Independence Postulate is ψ -ontic.

Ontic models for QM

• Compatibility:

$$\int \xi_{\hat{A}}(\boldsymbol{a}_i|\lambda) f_{|\psi\rangle}(\lambda) \, \mathrm{d}\lambda = |\langle \psi | \boldsymbol{a}_i \rangle|^2$$

PBR Theorem

Any ontic model that reproduces the predictions of QM and satisfies the Preparation Independence Postulate is ψ -ontic.

We call a hidden variable model ψ -ontic if every complete physical state or ontic state in the theory is consistent with only one pure quantum state; we call it ψ -epistemic if there exist ontic states that are consistent with more than one pure quantum state. – Harrigan, Spekkens 2010

 \Rightarrow The ontic state λ determines the quantum state $|\psi\rangle$.

- $\textcircled{O} \ \mathsf{Recap} \ \mathsf{of} \ \mathsf{the} \ \mathsf{PBR} \ \mathsf{Theorem} \ \checkmark$
- Iighlighting the important/problematic step
- The counterexample
- Conclusion

ψ -onticity

The ontic state λ determines the quantum state $|\psi\rangle$:

An important step towards the derivation of our result is the idea that the quantum state is physical if distinct quantum states correspond to non-overlapping distributions for λ . – Pusey, Barrett, Rudolph

Four levels of ψ -onticity

• There is a rule R assigning to every ontic state λ its corresponding quantum state $R(\lambda)$ such that $\mathbb{P}_{|\psi\rangle}(\{\lambda \mid R(\lambda) = |\psi\rangle\}) = 1.$

So For every $|\psi\rangle$ there is a set $\Lambda_{|\psi\rangle}$ such that for all $|\phi\rangle$: $\mathbb{P}_{|\psi\rangle}(\Lambda_{|\psi\rangle}) = 1$ and $\mathbb{P}_{|\phi\rangle}(\Lambda_{|\psi\rangle}) = 0.$

So For every $|\psi\rangle$, $\epsilon > 0$ there is a set $\Lambda^{\epsilon}_{|\psi\rangle}$ such that for all $|\phi\rangle$: $\mathbb{P}_{|\psi\rangle}(\Lambda^{\epsilon}_{|\psi\rangle}) > 1 - \epsilon$ and $\mathbb{P}_{|\phi\rangle}(\Lambda^{\epsilon}_{|\psi\rangle}) < \epsilon$.

For every $|\psi\rangle$ and $|\phi\rangle$ the distributions $\mathbb{P}_{|\psi\rangle}, \mathbb{P}_{|\phi\rangle}$ are non-overlapping.

Toy examples for QM show $3 \implies 2 \implies 1$ R. Hermens ψ without ψ

- $\textcircled{O} \ \mathsf{Recap} \ \mathsf{of} \ \mathsf{the} \ \mathsf{PBR} \ \mathsf{Theorem} \ \checkmark$
- **2** Highlighting the important/problematic step \checkmark
- The counterexample
- Conclusion

A contextual value definite ontic model

- A **context** *C* is a set of pairwise commuting 1-dimensional projectors that sum to $\hat{1}$.
- An **ontic state** λ is a function that assigns to each context a 1-dimensional projection operator such that

 $\lambda(C) \in C \ \forall C.$

The value of an observable in the context C when the state is λ is

$$v_{\lambda}(\hat{A}|C) := \operatorname{Tr}\left(\lambda(C)\hat{A}\right).$$

Satisfies

•
$$v_{\lambda}(\hat{A}|C) \in \sigma(\hat{A}),$$

• $v_{\lambda}(f(\hat{A})|C) = f(v_{\lambda}(\hat{A}|C)).$

Recovering the Born rule

• Set of ontic states:

$$\Lambda = \{\lambda : \mathcal{C} \to L(\mathcal{H}) \mid \lambda(\mathcal{C}) \in \mathcal{C}\}.$$

•
$$C_1, C_2, \ldots, C_n$$
 contexts,

• P_1, P_2, \ldots, P_n projectors such that $P_i \in C_i$, then

$$\Delta_{C_1,\ldots,C_n}^{P_1,\ldots,P_n} = \{\lambda \in \Lambda \mid \lambda(C_i) = P_i\}.$$

• For any $|\psi\rangle$:

$$\mathbb{P}_{|\psi\rangle}\left(\Delta_{\mathcal{C}_1,\ldots,\mathcal{C}_n}^{\mathcal{P}_1,\ldots,\mathcal{P}_n}\right) = \prod_{i=1}^n \langle \psi | \mathcal{P}_i | \psi \rangle.$$

ψ -ontic without ψ

The model is ψ -ontic

For every $|\psi\rangle$ there is a set $\Lambda_{|\psi\rangle}$ such that for all $|\phi\rangle$:

$$\mathbb{P}_{\ket{\psi}}\left(\mathsf{\Lambda}_{\ket{\psi}}
ight) = 1$$
 and $\mathbb{P}_{\ket{\phi}}\left(\mathsf{\Lambda}_{\ket{\psi}}
ight) = 0.$

Proof:

• Choose countable sequence C_1, C_2, \ldots such that

 $|\psi\rangle\langle\psi|\in C_i\;\forall i$

Define

$$\mathsf{A}_{|\psi\rangle} = \{\lambda \in \mathsf{A} \mid \lambda(C_i) = |\psi\rangle \langle \psi|\}$$

But without ψ

If $\langle \phi | \psi \rangle \neq 0$, then

 $\Lambda_{|\psi\rangle} \cap \Lambda_{|\phi\rangle} \neq \varnothing.$

Negative conclusion:

- In the ontic model there are ontic states that are consistent with more than one pure quantum state. So, according to Harrigan & Spekkens, it is ψ-epistemic.
- $\Rightarrow \psi$ -ontology theorems fails!

Positive conclusion:

I propose that we stop talking about the ill-defined notion of quantum state realism, and that we start talking instead about these sorts of question – e.g. whether quantum theory comes with objective standards for the ascription of states to physical situations. – Halvorson 2018

• The fact that quantum states correspond to non-overlapping distributions indicates that two agents using distinct quantum states are substantially disagreeing about *something*.