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Outline

1 What is the work of Colbeck and Renner about?

2 What have others concluded thus far about it?

3 The part that holds up: The Equiprobability Theorem.

4 A part that doesn’t hold up: a single qubit.
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Completeness of Quantum Mechanics

Colbeck & Renner 2015:

quantum theory is “maximally informative”, i.e., there is
no other compatible theory that gives improved predic-
tions. Furthermore, any alternative maximally informative
theory is necessarily equivalent to quantum theory. This
means that the state a system has in such a theory is in
one-to-one correspondence with its quantum-mechanical
state (the wave function). In this sense, quantum theory
is complete.

Completeness Theorem: Impossibility to improve on
predictions.

ψ-ontology Theorem: States of systems determine their
quantum state.
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Completeness of the quantum state

Quantum states determine outcome probabilities:

P|ψ〉(A = a) = |〈a|ψ〉|2.

A more informative state λ also determines probabilities:

pλ(A = a).

On average, the QM predictions are recovered:∫
pλ(A = a)fψ(λ)dλ = |〈a|ψ〉|2.

Λ

fψ(λ)

pA(a|λ) = |〈a|ψ〉|2

The recovery is trivial if the
λ-probabilities are equal to the
quantum probabilities.

If this holds for all A, the
quantum state is complete.
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Reality of the quantum state

A sufficient condition for an epistemic interpretation of quantum
states is that they can be represented by overlapping probability
distributions.

ψ-epistemic

Λ

fψ(λ)

λ cannot decide between |ψ〉 and |φ〉

fφ(λ)

ψ-ontic

Λ

fψ(λ)

λ: it’s not |φ〉! λ: it’s not |ψ〉!

fφ(λ)

ψ-ontic: Probability distributions for pure quantum states are
pairwise non-overlapping.
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Completeness of the Quantum State implies its Reality

Proof: By Reductio ad Absurdum.

Suppose there is overlap for ψ and φ:

ψ-epistemic

Λ

fψ(λ) fφ(λ)

pA(a|λ) = |〈a|ψ〉|2 pA(a|λ) = |〈a|φ〉|2

Let A and a be such that |〈a|ψ〉|2 6= |〈a|φ〉|2.

Completeness implies a contradiction on the overlap.
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Short Overview of Earlier Work
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Timeline

2010 Colbeck and Renner’s Completeness theorem (arXiv):

under the assumption that measurement settings can be
chosen freely, there cannot exist any extension of quantum
theory that provides us with any additional information
about the outcomes of future measurements.

2010 Confusion resulted in a FAQ.

2011 Nevertheless published in Nature Communications.

2012 Colbeck and Renner’s ψ-ontology theorem:

Here we show, based only on the assumption that mea-
surement settings can be chosen freely, that a system’s
wave function is in one-to-one correspondence with its el-
ements of reality. This also eliminates the possibility that
it can be interpreted subjectively.
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Timeline 2

2013 Clarification by Ghirardi & Romano and Vona & Liang.
“Free choice” is the conjunction of

Settings-Source independence
Parameter independence/No-signaling

2014 Leifer’s ψ-ontology overview paper.
Rigorous formulation and proof of the 2012 theorem that does
not rely on the completeness theorem.

2013-2017 Colbeck and Renner’s two overview papers of their
two theorems + another paper on the ψ-ontology theorem.

2015 Landsman. Reformulation and proof of the
Completeness theorem.

but to fill in some crucial details, certain technical assump-
tions have had to be added, whose physical status seems
somewhat obscure.

2016 Leegwater. Reformulation and proof of the Completeness
theorem. Allegedly without obscure assumptions.
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The Part That Holds Up
The Equiprobability Theorem
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Proving Completeness: the Equiprobability Theorem

Equiprobability Theorem

For any ontic model that satisfies parameter independence. For
local measurements on a qubit pair in the maximally entangled
state

|ψ〉 = 1√
2

(|↑↑〉+ |↓↓〉)

the λ-probabilities are equal to the quantum probabilities.
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The Equiprobability Theorem

|ψ〉

σθ1

σθ2

σθn

Alice

OA =↑
OA =↓

OA =↑
OA =↓

OA =↑
OA =↓

σθ1

σθ2

σθn

Bob

OB =↑
OB =↓

OB =↑
OB =↓

OB =↑
OB =↓

For any ontic model that satisfies Parameter Independence:

pAθi (↑ |λ) = P|ψ〉(↑ |σθi ⊗ 1) almost surely w.r.t. |ψ〉.
pBθj (↑ |λ) = P|ψ〉(↑ |1⊗σθj ) almost surely w.r.t. |ψ〉.

=⇒ For local measurements on the singlet state the quantum
predictions are complete.
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Proof strategy for the special case

The special properties of the singlet state play a crucial role in the
proof.

Symmetry of the state:

To show that pAz (↑ |λ) = P|ψ〉(↑ |σz ⊗ 1),

it suffices to show that pAz (↑ |λ) = pAz (↓ |λ).

Perfect correlations of the state:

pAz (↑ |λ) = pBz (↑ |λ),

pAz (↓ |λ) = pB−z(↑ |λ).

Then choose angles θ1, . . . , θn between z and −z and
“chain up” Bell inequalities to obtain desired result.
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Proving Completeness: the Equiprobability Theorem

Equiprobability Theorem

For any ontic model that satisfies parameter independence. For
local measurements on a qubit pair in the maximally entangled
state

|ψ〉 = 1√
2

(|↑↑〉+ |↓↓〉)

the λ-probabilities are equal to the quantum probabilities.

Still need to generalize to

n-level systems. X

local measurements in the Schmidt-basis for arbitrary
entangled states. X(I think)

arbitrary local measurements for arbitrary entangled states.

non-local measurements.

measurements on a single system.

???

Completely Real? R. Hermens 14 / 20



Proving Completeness: the Equiprobability Theorem

Equiprobability Theorem

For any ontic model that satisfies parameter independence. For
local measurements on a qubit pair in the maximally entangled
state

|ψ〉 = 1√
2

(|↑↑〉+ |↓↓〉)

the λ-probabilities are equal to the quantum probabilities.

Still need to generalize to

n-level systems. X

local measurements in the Schmidt-basis for arbitrary
entangled states. X(I think)

arbitrary local measurements for arbitrary entangled states.

non-local measurements.

measurements on a single system.

???

Completely Real? R. Hermens 14 / 20



Proving Completeness: the Equiprobability Theorem

Equiprobability Theorem

For any ontic model that satisfies parameter independence. For
local measurements on a qubit pair in the maximally entangled
state

|ψ〉 = 1√
2

(|↑↑〉+ |↓↓〉)

the λ-probabilities are equal to the quantum probabilities.

Still need to generalize to

n-level systems. X

local measurements in the Schmidt-basis for arbitrary
entangled states. X(I think)

arbitrary local measurements for arbitrary entangled states.

non-local measurements.

measurements on a single system.

???

Completely Real? R. Hermens 14 / 20



Measurements on a Single Qubit

Completely Real? R. Hermens 15 / 20



Completeness for individual systems?

Casting doubt:

Non-trivial ontic models for a single qubit exist:

Bell 1966, Gudder 1970.

Parameter Independence is an empty assumption for individual
systems.

Relieving doubt:

Actual measurements require interaction.

Plausible arguments could make Parameter Independence
applicable.

Critical Note:

Colbeck and Renner do not succeed in giving such plausible
arguments.
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Structure of the Argument

Cφ U
+

Qubit initial state:
|ψ0〉 = 1√

2
(|↑〉+ |↓〉).

Couple to qubit in arbitrary state |φ〉:
Cφ |ψ0〉 = |ψ0φ〉.

Unitarily transform to maximally entangled state:
U |ψ0φ〉 = |ψ〉 = 1√

2
(|↑↑〉+ |↓↓〉).

Because
P|ψ0〉(↑ |σz) = P|ψ〉(↑ |1⊗σz)

“the same relation holds when considering λ-probabilities”

p
A,|ψ0〉
z (↑ |λ) = p

B,|ψ〉
z (↑ |λ)
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Why would that follow?
What does it mean?

Completely Real? R. Hermens 18 / 20



Formal motivation to warrant conclusion

Cφ U
+

It should be possible to model this process.

Proposal:

ΓCφ,U(λ′|λ)

probability distribution over states for qubit pair conditional
on initial state λ for single qubit.

Because P|ψ0〉(↑ |σz) = P|ψ〉(↑ |1⊗σz),

therefore pAz (↑ |λ) =
∫
pBz (↑ |λ′)ΓCφ,U(λ′|λ) dλ′

almost surely w.r.t. |ψ0〉.
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Physical motivation to warrant conclusion

pAz (↑ |λ) =
∫
pBz (↑ |λ′)ΓCφ,U(λ′|λ) dλ′

As a general assumption is unsatisfactory.

Proposal: only valid in the context of a measurement.

CM ↓ ↑r U ↓ ↑r
+

↓ ↑r

For collapse theories the final state does not occur and the
equiprobability theorem cannot be applied.
For no-collapse theories application of equiprobability theorem
requires:

Qubit and apparatus can be spatially separated.
Arbitrary other measurements can be made on the qubit.
Arbitrary non-pointer measurements can be made on the
apparatus.
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