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Completeness of Quantum Mechanics

“quantum theory is “maximally informative”, i.e., there
is no other compatible theory that gives improved predic-
tions. Furthermore, any alternative maximally informative
theory is necessarily equivalent to quantum theory. This
means that the state a system has in such a theory is in
one-to-one correspondence with its quantum-mechanical
state (the wave function). In this sense, quantum theory
is complete.”

Colbeck & Renner 2015
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Completeness of Quantum Mechanics

Claim 1

No alternative theory that is compatible with quantum theory and
allows for free choice (with respect to the discussed causal orders)
can give improved predictions.

Claim 2

In any alternative theory that is at least as informative as quantum
theory and compatible with free choice (with respect to the
discussed causal orders), there is a one-to-one correspondence
between the parameters of the alternative theory and the quantum
state (up to a possible removable degeneracy in the parameters of
the alternative theory).
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Cleaning up Claim 1 and Claim 2

Motto:

“Now it is precisely in cleaning up intuitive ideas for math-
ematics that one is likely to throw out the baby with the
bathwater.”

Bell 1990
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Causal order in the Colbeck-Renner theorems

Causal Network
for QM

X Y

A B

Z

 6=→

Free Choice: A⊥⊥ZBY and B⊥⊥ZAX .
=

Parameter Independence + Setting Independence.
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Against a network approach

It is common to treat settings as random variables but. . .

“this means that the candidate theory in question would
have to specify how probable it is that Alice will choose
one setting A1 rather than A2, and similarly for Bob and
for their joint choices. But that would be a remarkable feat
for any physical theory. Even quantum mechanics leaves
the question what measurement is going to be performed
on a system as one that is decided outside the theory,
and does not specify how much more probable one mea-
surement is than another. It thus seems reasonable not
to require from the candidate theories that they describe
such probabilities.”

Seevinck and Uffink 2010

=⇒ Model settings as indices for probability distributions, not as
random variables.
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Adopting ontic models

In a causal network approach:

All variables are treated on a par,

All probabilities are derived from a single joint probability
distribution.

This is problematic because:

It fails to distinguish the different theoretical roles some
variables play,

It makes the interpretation of probability more ambiguous,

while comparing probability statements is what Claim 1 is
about.

The framework of ontic models avoids these issues.
Price: have to assume Setting Independence.
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Claims 1 and 2 formulated more rigorously
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Completeness of the quantum state

Quantum states determine
outcome probabilities:

P|ψ〉(a|A) = |〈a|ψ〉|2 .
A more informative state λ also
determines probabilities:

pA(a|λ).

On average, the QM predictions
are recovered:

〈pA(a|λ)〉fψ = |〈a|ψ〉|2.

Λ

fψ(λ)

pA(a|λ)

•

pA(a|λ) = |〈a|ψ〉|2

The recovery is trivial if the λ-probabilities are equal to the
quantum probabilities.

If this holds for all A, the ontic model is called ψ-complete.
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Reality of the quantum state

A sufficient condition for an epistemic interpretation of quantum
states is that they can be represented by overlapping probability
distributions.

Λ

fψ(λ)

λ cannot decide between |ψ〉 and |φ〉

fφ(λ)

ψ-epistemic

Λ

fψ(λ)

λ: it’s not |φ〉! λ: it’s not |ψ〉!

fφ(λ)

ψ-ontic

If all probability distributions for pure quantum states are
pairwise non-overlapping the ontic model is called ψ-ontic.
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Completeness of Quantum Mechanics

Claim 1

Every ontic model for quantum mechanics that satisfies Parameter
Independence must be ψ-complete.

Claim 2

Every ontic model for quantum mechanics that satisfies Parameter
Independence must be ψ-ontic.

Leifer (2014) gave an elaborate proof for Claim 2.
Landsman (2015) criticized Claim 1.
Leegwater (2016) endorsed Claim 1.

Theorem: Claim 1 =⇒ Claim 2

Every ontic model that is ψ-complete is also ψ-ontic.
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Claim 1 =⇒ Claim 2

Proof:

Let fψ and fφ be two probability distributions corresponding to
non-equivalent quantum states.

Then there exists an observable A with eigenvalue a such that

|〈a|ψ〉|2 6= |〈a|φ〉|2 .

Now consider the following set of ontic states:

∆ :=
{
λ ∈ Λ

∣∣∣ pA(a|λ) = |〈a|ψ〉|2
}
.

Because the ontic model is ψ-complete:∫
∆
fψ(λ) dλ = 1 and

∫
∆
fφ(λ) dλ = 0.

Thus fψ and fφ are non-overlapping.

�
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Proof of Claim 1, Step 1:
The Equiprobability Theorem
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Proving Completeness: the Equiprobability Theorem

Equiprobability Theorem

Consider a pair of d-level quantum systems (d ≥ 2) in the
maximally entangled state

|ψ〉 = 1√
d

d∑
i=1

|ei ⊗ ei 〉 .

For any ontic model that satisfies Parameter Independence the
λ-probabilities for local measurements are equal to the quantum
probabilities (µψ -almost surely).

Stairs-Heywood-Redhead Theorem (1983)

As above but with d ≥ 3.
For any ontic model that satisfies Parameter Independence the
λ-probabilities for local measurements cannot be 0,1-valued.
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Proof strategy for the Equiprobability Theorem

Consider observables A and B with

A |ei 〉 = ai |ei 〉 ,
B |ei 〉 = bi |ei 〉 .

Symmetry of the state

To show that pA(ai |λ) = P|ψ〉(ai |A⊗ 1),

it suffices to show that pA(ai |λ) = pA(aj |λ).

Perfect correlations

pA(ai |λ) = pB(bi |λ),

pA(aj |λ) = pUBU∗(bi |λ)

for some local U.
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Proof of Claim 1, Step 2:
Measurements in the Schmidt basis
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Measurements in the Schmidt basis

Theorem

Consider a pair of d-level quantum systems (d ≥ 2) in the
entangled state

|ψ〉 =
d∑

i=1

ci |ei ⊗ ei 〉 .

For any ontic model that satisfies Parameter Independence the
λ-probabilities for local measurements in the basis {e i} are equal
to the quantum probabilities (µψ -almost surely).

Proof strategy:

1 Couple the system to a pair of D-level systems with D � d ,

2 Use local unitary operations to get maximally entangled state,

3 Apply equiprobability theorem.

Messy, but works.
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Proof of Claim 1, Step 3:
Measurements on a single system
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Completeness for single systems?

Casting doubt:

Parameter Independence is an empty assumption for single
systems.

Non-trivial ontic models for arbitrary d-level systems exist:

Bell 1966, Gudder 1970.

Relieving doubt:

“These models [. . . ] cannot be extended to bipartite sce-
narios while allowing for free choice with respect to one of
the causal orders of Figure 4.”

Colbeck, Renner 2015

Serious models should have interactions.

Plausible arguments could make Parameter Independence
applicable.
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Proof strategy for single systems

1 Consider a d-level system in the state

|ψI〉 =
d∑

i=1

ci |ei 〉

and an observable A with A |ei 〉 = ai |ei 〉.
2 Couple it to a system in arbitrary state |φ〉:

Cφ |ψI〉 =
d∑

i=1

ci |ei ⊗ φ〉 .

3 Transform it to obtain right entangled state:

|ψF〉 = UCφ |ψI〉 =
d∑

i=1

ci |ei ⊗ ei 〉 .

4 Apply previous theorem to this case, and draw conclusion
about initial case.
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Proof strategy for single systems

Initial state: |ψI〉 =
∑d

i=1 ci |ei 〉.
Final state: |ψF〉 =

∑d
i=1 ci |ei ⊗ ei 〉.

Argument (Leegwater 2016):
Because in QM

P|ψI〉(ai |A) = P|ψF〉(ai |1⊗A)

the same relation holds when considering λ-probabilities

p
|ψI〉
A (ai |λ) = p

|ψF〉
1⊗A(ai |λ)

These objects are not well-defined.

Seem to be objects in two distinct ontic models.

(Is it the same λ?)

The step from operational equivalence to ontic equivalence is
suspicious. (Contextuality!)
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What is the underlying assumption?

It should be possible to model interactions like

|ψF〉 = UCφ |ψI〉 .

Proposal:
ΓUCφ(λ′|λ)

is a transition probability from an ontic model for the individual
system to an ontic model for the combined system.

The required assumption is then

pA(ai |λ) =
∫
p1⊗A(ai |λ′)ΓUCφ(dλ′|λ) (µψ -almost surely).

But all we have is

〈pA(ai |λ)〉fψ =
〈∫

p1⊗A(ai |λ′)ΓUCφ( dλ′|λ)
〉
fψ

.
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A more physically motivated argument

Initial state: |ψI〉 =
∑d

i=1 ci |ei 〉.
Final state: |ψF〉 =

∑d
i=1 ci |ei ⊗ ei 〉.

Proposal:

pA(ai |λ) =

∫
p1⊗A(ai |λ′)ΓUCφ(dλ′|λ) (µψ -almost surely)

only holds in the context of an actual measurement
where |ψF〉 is the final state for system+apparatus.
Problems

The argument does not apply to collapse theories.

Assumes general validity of von Neumann measurement
scheme.

Only works in scenarios where the system can be measured a
second time after the interaction.
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